

NORTH CRAY ROAD ESS

Sidcup, DA14 5HE

FLOOD RISK ASSESSMENT & DRAINAGE STRATEGY

Project No

Revision No

Issue date

K 103 125

24-432

Control Sheet

This report has been prepared by Calibro Consultants Ltd for the sole benefit and use of the Client. Calibro Consultants Ltd offer no liability for the information contained within the report to any third party.

Prepared by	Signature	Date
Cory Foster BSc Graduate Flood Risk Consultant		26/03/2025

Reviewed by	Signature	Date
Patrick Goodey BSc MSc Head of Flood Risk and Hydrology		26/03/2025

Approved for issue by	Signature	Date
Patrick Goodey BSc MSc Head of Flood Risk and Hydrology		26/03/2025

i

CONTENTS

1	EXECUTIVE SUMMARY	1
2	INTRODUCTION	2
3	EXISTING SITE AND HYDROLOGY CHARACTERISTICS	3
4	PROPOSED DEVELOPMENT	6
5	FLOOD RISK	8
6	PROPOSED DRAINAGE STRATEGY	12
7	SUMMARY	21

Tables

Table 5-1	Flood Zone Classification	8
Table 4-1	PPG Development Vulnerability Classification	11
Table 6-1	Greenfield Runoff	13
Table 6-1	Isolated Infrastructure Runoff and Storage (Sensitivity Event)	15
Table 6-3	Water Quality Indices (as per C753 The SuDS Manual)	18
Table 6-2	Proposed Drainage System Maintenance Plan	19

Figures

Figure 3-1	Site Location	3
Figure 3-2	Site Topography and Hydrology	4
Figure 3-3	BGS Superficial Deposits	5
Figure 4-1	ESS Development Areas	6
Figure 5-1	RoFSW +20% Climate Change Extents	9
Figure 6-1	Depth-Duration Curve Model Results	14

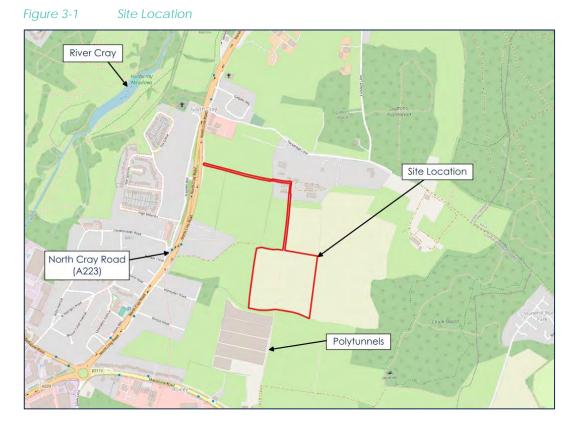
Appenices

Appendix A	Site Proposals
Appendix B	Drainage Calculations
Appendix C	Drainage Concept Layout

1 EXECUTIVE SUMMARY

- 1.1.1 Planning permission is being sought for a proposed Energy Storage System (ESS) on land adjacent to the east of North Cray Road, Sidcup.
- 1.1.2 This document considers the flood risk to the site and presents a drainage strategy to mitigate against the potential downstream impacts of the development.
- 1.1.3 The Flood Map for Planning shows that the site is located in Flood Zone 1, at Low risk of flooding from rivers and the sea. The proposals constitute 'Essential Infrastructure' and are appropriate in Flood Zone 1.
- 1.1.4 Parts of the site are considered to be at a mapped risk of surface water flooding, however, with the exception of access tracks, no development is proposed in areas at risk of surface water flooding.
- 1.1.5 The site is not considered to be at significant risk of flooding from, groundwater, sewers, or artificial sources.
- 1.1.6 As a result of the above, in accordance with paragraph 175 of the National Planning Policy Framework, neither the Sequential Test nor Exception Test are required for the proposals.
- 1.1.7 A sealed gravel base system is proposed to underlay each of the ESS areas in order to detain contaminated water in the unlikely event of a fire. Flows will be shut off by penstock chambers during a fire event, thus forming a sealed system. There would be sufficient storage available for at least nine hours (eastern ESS area) and 36 hours (western ESS area) of fog water suppression spraying, in the extremely unlikely event this is required.
- 1.1.8 During regular and design rainfall events, flows from the gravel base system would be discharged at slow rates into a proposed infiltration basin (eastern ESS area) and underground infiltration crates (western ESS) via a hydrobrake penstock chamber and pipes. Therefore, the gravel bases would be providing the storage of design rainfall with the infiltration basin providing the discharge destination.
- 1.1.9 Rain falling on more isolated infrastructure would be directed to the ground, mimicking the existing site.
- 1.1.10 The drainage infrastructure has been designed to accommodate a design event, which includes 25% uplift for climate change in accordance with national guidance. To ensure compliance with local policy, a sensitivity event with 40% uplift has ben utilised, with sufficient storage provided.
- 1.1.11 The proposals meet the aims of the National Planning Policy Framework, being safe from all sources of flooding and replicating existing runoff arrangements as closely as is reasonably practicable.

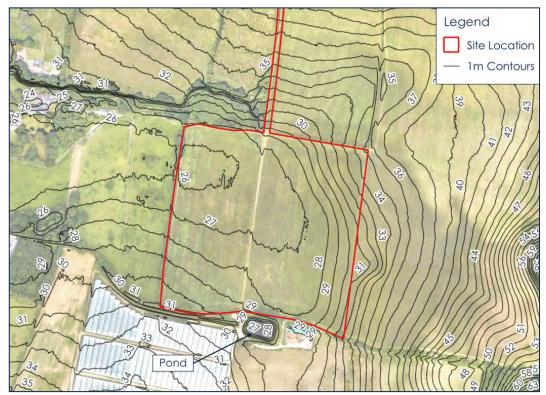
2 INTRODUCTION


2.1 Background

- 2.1.1 Calibro has been appointed to undertake a Flood Risk Assessment (FRA) for a proposed Energy Storage System (ESS) on land adjacent to the east of the North Cray Road (A223), Sidcup.
- 2.1.2 The National Planning Policy Framework (NPPF) requires that the planning system takes full account of flood risk. This requires that:
 - Within the site, the most vulnerable development is located in areas of lowest flood risk, unless there are overriding reasons to prefer a different location;
 - The development is appropriately flood resistant and resilient such that, in the event of a flood, it could be quickly brought back into use without significant refurbishment;
 - It incorporates sustainable drainage systems, unless there is clear evidence that this would be inappropriate;
 - Any residual risk can be safely managed; and
 - Safe access and escape routes are included where appropriate, as part of an agreed emergency plan.
- 2.1.3 Footnote 63 of the NPPF states that a site-specific FRA will be required for proposals:
 - a) that are greater than 1 hectare in area within Flood Zone 1;
 - b) that are located in Flood Zones 2 and 3;
 - c) in an area within Flood Zone 1 which has critical drainage problems;
 - d) in an area within Flood Zone 1 identified in a Strategic Flood Risk Assessment (SFRA) as being at flood risk now or in the future; and
 - e) in an area in Flood Zone 1 that may be subject to other sources of flooding, where its development would introduce a more vulnerable use.
- 2.1.4 This assessment considers the risks of all types of flooding to the site and provides a drainage strategy to manage surface water runoff from the development.

3 EXISTING SITE AND HYDROLOGY CHARACTERISTICS

- 3.1 Site Description
- 3.1.1 The site is located on land adjacent to North Cray Road (A223), Sidcup. The approximate coordinates at the centre of the site are 548850, 170970. The nearest postcode is DA14 5HE.
- 3.1.2 The site is approximately 7.5ha in area and comprises greenfield land.
- 3.1.1 The site is bordered with greenfield agricultural land. To the immediate south of the site sits a series of polytunnels and associated warehouses. Access to the site is via North Cray Road. Figure 3-1 shows the site location.



3.2 Topography and Hydrology

3.2.1 Topography is a defining feature of the site, with the presence of a slight valley formation which enters the site at the south before turning west out of the site. The site therefore slopes to the north and west with a fall of approximately 9m across it (from approximately 35mAOD to approximately 26mAOD), at approximately 1 in 30, as demonstrated in Figure 3-2.

3.2.2 The closest designated Main River to the site is the River Cray which is located approximately 1km to the west. There is a pond located to the immediate south of the site and is associated with the polytunnels located in the same area. A review of LiDAR data shows that the pond is bunded and has an inflow from a suspected drainage ditch located to the west of the pond. There are no evident outfalls associated with the pond, nor any other waterbodies within the vicinity of the site.

Figure 3-2 Site Topography and Hydrology

3.3 Geology and Soils

- 3.3.1 Geological data held by the British Geological Survey (BGS) show that the majority of the site is underlain by 'Lewes Nodular Chalk Formation, Seaford Chalk Formation and Newhaven Chalk Formation (Undifferentiated) Chalk', with a small part of the northeastern corner of the site being underlain by 'Thanet Formation Sand'.
- 3.3.2 BGS records also indicate that there is a band of 'Head Clay, Silt, Sand and Gravel' superficial deposits following the base of the valley running through the site. Figure 3-3 shows the superficial deposits for the site.

Figure 3-3 BGS Superficial Deposits

- 3.3.3 The BGS Hydrogeology aquifer classification (625k) records the geology under the entire site as a '*Highly Productive Aquifer'*.
- 3.3.4 SoilScapes mapping records that the entire site is underlain by 'Freely draining slightly acid but base-rich soils'.

4 PROPOSED DEVELOPMENT

4.1 Site Proposals

- 4.1.1 The proposals are for an ESS. The site will comprise energy storage racks, a transformer and containerised infrastructure. Fencing, lighting, and CCTV will also be installed on site.
- 4.1.2 The development will be split into three sections comprising a western ESS area, a substation compound and an eastern ESS area. These development areas within the site are shown in Figure 4-1. The proposed site layout is shown in Appendix A.
- 4.1.3 The reason for the location and alignment of the development areas within the site is to manage surface water flood risk, as described in Section 5.4 of this report.
- 4.1.4 Including their proposed perimeter access roads, the eastern ESS area measures approximately 0.41ha with the western area measuring approximately 1.4ha.

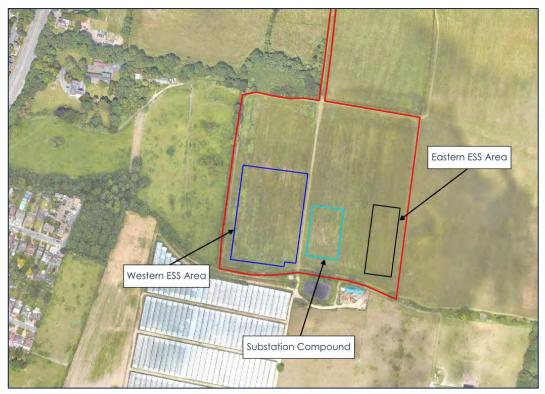


Figure 4-1 ESS Development Areas

4.1.5 The infrastructure, with the exception of fencing or lighting and CCTV columns, will be laid on gravel bases and the access track will be formed from permeable compacted gravel material.

- 4.1.6 The more vulnerable infrastructure (energy storage racks, transformers, cabins) will be constructed on concrete bases or plinths, which will lie atop the gravel. This will ensure the units are raised slightly above the surrounding ground.
- 4.1.7 This assessment recommends the minimum depth of the gravel bases for both the substation and ESS areas required for the surface water drainage strategy, described in Section 6.1.
- 4.1.8 The proposals would have an anticipated lifetime of approximately 40 years and consequently it is envisaged that decommissioning would commence before the year 2070.

5 FLOOD RISK

5.1 National Planning Policy Framework (NPPF)

- 5.1.1 In accordance with the NPPF, this FRA considers the following sources of flooding:
 - a) Tidal Flooding from the sea;
 - b) Fluvial Flooding from rivers and streams;
 - c) Surface Water Flooding from intense rainfall events;
 - d) Groundwater flooding from elevated groundwater levels or springs;
 - e) Flooding from sewers from existing sewer systems; and
 - f) Artificial sources from reservoirs, canals etc.

5.2 Historical Flooding

5.2.1 The EA Recorded Flood Outlines dataset indicates that the site is not recorded to have experienced historical flooding.

5.3 Flood Zones

5.3.1 The Flood Zones are based on the assessed probability of the site flooding from rivers and the sea, ignoring the presence of flood defences. The Flood Zone classifications from PPG are presented in Table 5-1 below.

Table 5-1 Flood Zone Classification				
Flood Zone	Risk	Fluvial Flooding Annual Probability	Tidal Flooding Annual Probability	
1	Low	> 1 in 1,0)00 year	
2	Medium	1 in 1,000 – 1 in 100 year	1 in 1,000 – 1 in 200 year	
3	High	1 in 100 year	1 in 200 year	
3b	Functional Floodplain	Land where water has to flow or be stored in times of flood. This is defined in the relevant SFRA.		

5.3.2 The Flood Map for Planning defines the entire site as Flood Zone 1 (Figure 5-2). These areas are not predicted to be at risk of fluvial flooding during a 1 in 1,000 year event and are at **Low** risk. The site is well beyond the limit of any tidal influences.

5.4 Surface Water Flooding

5.4.1 The Risk of Flooding from Surface Water (RoFSW) dataset indicates areas where surface water is likely to flow and accumulate. The mapping is derived by simulation of rainfall events over a digital terrain model (DTM).

- 5.4.2 The RoFSW dataset (inclusive of 20% climate change), shown in Figure 5-2, demonstrates that surface water flooding follows the shape of the valley in the site as mentioned in Section 3.2. surface water flooding is predicted to enter the site from the south before turning west to flow out of the site.
- 5.4.3 Furthermore, analysis of the data shows that surface water flooding is predicted to be shallow, less than 200mm for much of its extent and not predicted to exceed 0.3m in depth.
- 5.4.4 Due to its bunded nature, the pond located to the south of the site is shown to not have an impact on surface water flooding at the site.
- 5.4.5 With the exception of permeable access tracks that would not cause a negative impact to the movement of surface water across the site, no infrastructure is proposed in predicted surface water flooding extents. As a result, the site is assessed to be at **Low** risk of surface water flooding.

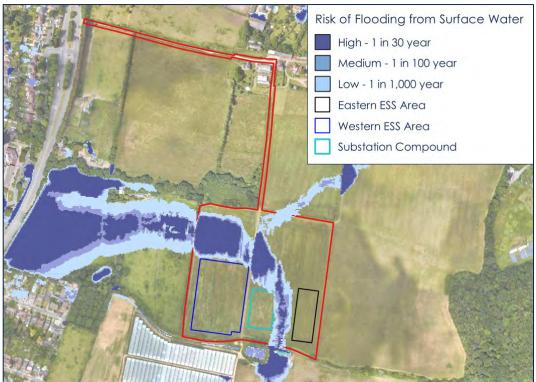


Figure 5-1 RoFSW +20% Climate Change Extents

5.5 Groundwater Flooding

5.5.1 The BGS Hydrogeology aquifer classification (625k) records the geology under the majority of the site as a 'Low Productivity Aquifer'. OS mapping indicates that there are no springs within the vicinity of the site.

- 5.5.2 The London Borough of Bexley Level 1 SFRA shows groundwater levels to range between 2-5m below the ground surface. Furthermore, in the very unlikely event groundwater were to emerge above the ground, it's unlikely to exceed the extents of surface water flooding at the Site.
- 5.5.3 The risk of flooding from groundwater is therefore assessed as being Very Low.

5.6 Flooding from Sewers

- 5.6.1 There are no known private or public sewers within the site. Given the land use surrounding the site, there are no areas served by a sewer network sufficient enough to generate significant flooding. Furthermore, the topography is not conducive for sewer flooding to affect the site.
- 5.6.2 Therefore, the site is at **Negligible** risk of sewer flooding.

5.7 Flooding from Artificial Sources

- 5.7.1 Mapping data from the Environment Agency shows that the site is not at risk from a catastrophic reservoir breach. No other artificial sources, such as canals, have been identified which may pose a risk to the site.
- 5.7.2 The development is therefore considered to be at **Negligible** risk of flooding from artificial sources.

5.8 Safe Access and Egress

5.8.1 Given the overall low risk of flooding posed to the site, site access and egress would likely be unhindered even during extreme weather. Furthermore, the site will be operated remotely with only intermittent access required, which could avoid times of flooding or severe weather.

5.1 Development Vulnerability

- 5.1.1 Table 2 of the Planning Practice Guidance (PPG) defines which types of development are acceptable in each Flood Zone and is reproduced in Table 4-1. The proposed development is classified as 'Essential Infrastructure' and falls within Flood Zone 1. The proposed development is also located outside of the extents of surface water flooding within the site and has been assessed as being at an overall low risk of flooding from other sources.
- 5.1.2 Furthermore, the location of the ESS areas and substations means the more vulnerable elements of the site are located in the areas of lowest risk of flooding. Consequently, the proposed development adheres to one of the core requirements of the NPPF, as per paragraph 2.1.2 of this report.
- 5.1.3 The proposals are therefore considered to be appropriate without the need for the Sequential or Exception tests.

Table 4-2PPG Development Vulnerability Classification

Flood Zone	Flood Risk Vulnerability				
	Essential Infrastructure	Highly Vulnerable	More Vulnerable	Less Vulnerable	Water Compatible
1	✓	\checkmark	\checkmark	\checkmark	\checkmark
2	~	Exception Test Required	~	\checkmark	~
3a	Exception Test Required	×	Exception Test Required	√	~
3b	Exception Test Required	×	×	×	\checkmark

6 PROPOSED DRAINAGE STRATEGY

6.1 Surface Water Management

- 6.1.1 All ESS infrastructure will be situated on top of gravel bases and access tracks will be constructed using permeable material.
- 6.1.2 The SuDS hierarchy requires that surface water runoff should be managed as high up the following list as practically possible:
 - Into the ground (infiltration), or then;
 - To a surface water body, or then;
 - To a surface water sewer, highway drain or another drainage system, or then;
 - To a combined sewer.
- 6.1.3 In order to determine the most suitable method of surface water management, the options have been assessed below, with the highest option in the SuDS hierarchy used.

Into the Ground

- 6.1.4 As evidenced in Section 3.3, the soils under the site are freely draining and are likely to yield sufficient infiltration rates to discharge surface water runoff to the ground. The data suggests the soils are of a loamy composition. In the absence of specific soakage testing, the typical infiltration rate assumed at the site was 5x10-6m/sec (0.018m/hr), which is the lowest rate for a loamy sand, based on Table 25.1 of the CIRIA SuDS Manual.
- 6.1.5 The proposed drainage strategy's surface water runoff management approach is to discharge surface water runoff generated by the proposed development to the ground via infiltration, thus satisfying the SuDS hierarchy.
- 6.1.6 The drainage of the site will be self-sufficient with no offsite discharges and therefore exceeds the minimum requirements of Policy 5.13 of the London Plan (2014).

6.2 Climate Change

- 6.2.1 In accordance with NPPF, an allowance for climate change must be applied to the rainfall calculations. The proposed site is estimated to have an anticipated lifetime of 40 years. The site lies within the Darent and Cray Management Catchment. For a development with a 40-year lifetime, the central allowance for the 2070s epoch is applied. This equates to a 25% uplift in rainfall rates. The design event for the proposals is therefore 1 in 100 year +25%.
- 6.2.2 Policy DP33 of the Bexley Local Plan requires sites to achieve greenfield runoff rates for flood events up to and including the 1 in 100 year +40% climate change event. For the proposed development, this is beyond the anticipated lifetime of the scheme in accordance with national guidance.

The proposed drainage strategy is based on infiltration with no offsite discharges so complies with the local policy. To test if the proposed drainage network is also able to accommodate the 1 in 100 + 40% climate change event, a sensitivity test using this event has been conducted, with results shown in Appendix B.

6.3 Greenfield Runoff Rates

- 6.3.1 In order to limit proposed flows from the ESS areas to their infiltration facilities as close to greenfield rates as possible, greenfield runoff rates for the contribution areas have been calculated using the FEH Statistical Method, the results of which are shown in Table 6-1, with calculations provided in Appendix B.
- 6.3.2 It is noted that as no off-site discharges are proposed, there is no need to control flows from the ESS areas to greenfield rates. However, to limit the size of the infiltration facilities, the aim is to match greenfield rates wherever possible.
- 6.3.3 The area contributing rainfall to the below ground drainage system will be the gravel bases beneath the ESS units and the internal access track. As the perimeter access tracks will be permeable (see Section 6.4 below), they have been discounted from the contribution areas. Consequently, the contribution areas for the purposes of calculating drainage for the eastern ESS area measure approximately 2,400m³ (0.24ha) with the western area being approximately 9,700m² (0.9ha).

Rainfall Event	Eastern ESS Runoff (I/s)	Western ESS Runoff (I/s)
QBar	0.2	0.8
1 in 30 year	0.5	1.9
1 in 100 year	0.6	2.6

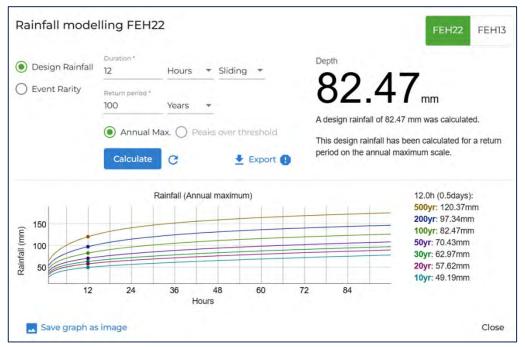
6.3.4 The proposed drainage strategy has been designed to achieve the above rates during the sensitivity event mentioned in Section 6.2.

6.4 Access Tracks

6.4.1 Access tracks will be constructed using permeable material and consequently would allow rainfall to percolate to the ground locally, mimicking the existing site. Therefore, no further mitigation is proposed.

6.5 Isolated Infrastructure

6.5.1 Isolated infrastructure will be situated on gravel bases.



- 6.5.2 The gravel bases would discharge water via natural soakage rather than a fitted outfall. However, as discussed below. The gravel bases have been sized to store runoff generated during a 1 in 100 year, 12 hour storm, inclusive of climate change and with no infiltration or outflow allowance in the calculations.
- 6.5.3 Given the geological conditions at the site (detailed in Section 3.3) infiltration is expected to be good and therefore this is likely to be a conservative assessment.

Storage Requirements

6.5.4 To calculate the likely volume of runoff generated from the infrastructure impermeable areas during the 1 in 100 year, 12 hour storm, the Depth-Duration-Frequency model in the Flood Estimation Handbook (FEH) was used. The FEH predicted rainfall depth for the present day is 82.5mm provided in Figure 6-1.

- 6.5.5 In accordance with the NPPF, an allowance for climate change must be applied to the design rainfall. Therefore, the 1 in 100 year, 12 hour + 25% design rainfall depth is 103.1mm.
- 6.5.6 As explained in Section 6.2, a sensitivity event assuming a 40% uplift on rainfall depths has been completed. The rainfall depth during the sensitivity event is 115.5mm.
- 6.5.7 The footprint areas of the various containerised infrastructure are provided in Table 6-1. It should be noted these include the gravel bases as well as the container roofs to ensure rain falling on the gravel bases themselves is accounted for, not just the containers. The table also summarises the calculated runoff generated from the container areas during the design event, and the storage provided by the gravel bases.

6.5.8 The isolated gravel bases would be lined by a permeable geotextile and extend at least 300mm on all sides of the infrastructure, with the resultant areas shown in Table 6-1. The bases would have depths of 400mm and porosity of 0.3, with the resultant storage capacity also provided in Table 6-1.

Isolated Infrastructure	Footprint Area (m²)	Runoff Generated (m³)	Gravel Base Area (m²)	Gravel Base Storage (m³)
Switchroom	38.8	5.5	47.7	5.7
Containers	31.5	4.7	40.7	4.9
Harmonic Filters	21.1	3.2	27.6	3.3
Transformer	71.2	9.5	81.9	9.8
DNO Container	29.9	4.4	37.8	4.5

Table 6-2Isolated Infrastructure Runoff and Storage (Sensitivity Event)

6.5.9 As shown in Table 6-1, the proposed gravel beds provide sufficient capacity to store the 1 in 100 year + 40% sensitivity event and therefore the design rainfall event, with additional capacity for an exceedance event. It would encourage percolation to the ground as per the existing site. However, infiltration rates have not been included in the calculations to ensure a conservative estimate.

6.6 ESS Units

- 6.6.1 The ESS comprises the largest land take of the proposals and is therefore the largest area of relatively concentrated hardstanding.
- 6.6.2 For reasons of fire management (explained below), it is not recommended to simply allow the ESS units area to drain to ground locally. Therefore, it is proposed to discharge runoff generated from the ESS units to infiltration features. Due to the proximity of the predicted surface water flooding area, the western ESS area would drain to underground Geocellular crates. The eastern ESS units would be able to discharge to an infiltration basin. Runoff will be routed to the storage crates and infiltration basin via hydrobrake penstock chambers with discharge rates as close to greenfield QBar rates as possible.
- 6.6.3 The capacities of the proposed infiltration features have been calculated using hydrographs extracted from the Microdraiange Source Control calculations for each of the ESS area gravel bases during the critical duration event. The extracted hydrographs were then used as inflows into the proposed infiltration features.
- 6.6.4 The infiltration basin, storage crates and gravel bases have been designed to have sufficient capacity to store a design rainfall event (1 in 100 year +25%) and provide sufficient capacity during the sensitivity event. As with the isolated infrastructure, the

contribution area for the calculations includes the gravel base areas as well as the ESS containers, to ensure rain falling on the gravel base is accounted for.

- 6.6.5 The above arrangements would ensure no offsite discharge is proposed and rainfall would be managed on site.
- 6.6.6 Due to the lack of sensitive downstream receptors, a Factor of Safety of 5 has been applied to the infiltration calculations.

Eastern ESS Area

- 6.6.7 The proposed gravel base would have an area of approximately 0.24ha and therefore a QBar runoff equivalent of approximately 0.21/s. However, in order to manage blockage risk and comply with relevant Sewerage Sector Guidance, an orifice of at least 50mm is required, resulting in a discharge rate of 0.91/s.
- 6.6.8 Microdrainage source control calculations (Appendix C) indicate that approximately 181m³ of volume is required in the infiltration basin and approximately 103m³ of volume is required in the gravel bases for the eastern ESS area during the design, critical duration, event.
- 6.6.9 The proposed gravel base for the eastern ESS area would measure approximately 0.24ha and have a depth of at least 0.4m at its downstream end, base slope of 1:300 and porosity of 0.3. Microdrainage calculations show that such bases would only fill to a maximum of 0.3m during the design event and 0.34m during the sensitivity event, providing 100mm of additional capacity for an exceedance event.
- 6.6.10 The infiltration basin for the eastern ESS area measures 1m deep, has a base area of approximately 55m², a crest area of approximately 162m², has 1 in 3 side slopes and an approximate volume capacity of 104m³.

Western ESS Area

- 6.6.11 As with the eastern area, a 0.91/s discharge rate is required to comply with Sewerage Sector Guidance, which is therefore as close to greenfield QBar rates as reasonably practicable.
- 6.6.12 Microdrainage source control calculations indicate that approximately 177m³ of volume is required in the infiltrating geocellular crates and approximately 830m³ of volume is required in the gravel bases for the western ESS area during the design, critical duration, event.
- 6.6.13 The proposed gravel base for the western ESS area would measure approximately 0.97ha and have a depth of at least 0.5m at its downstream end, base slope of 1:300 and porosity of 0.3. Microdrainage calculations show that such bases would only fill to a maximum of 0.43m during the design event and 0.48 during the sensitivity event, providing some additional capacity for an exceedance event.

6.6.14 The storage crates are proposed to be 1m deep, have a length of 50m, a width of 4m and a total area of approximately 200m². An assumed infiltration rate of 0.018m/hr has been used to inform the design of the storage crates. The storage crates have a capacity of approximately 190m³, approximately 13m³ greater than the volume required.

6.7 Fire Management

Background

- 6.7.1 ESS units have, without mitigation, the potential to ignite. Ignition is most commonly caused by thermal runaway, which occurs when ESS units overheat. This can be exacerbated in a few ways, including proximity to ESS units already alight.
- 6.7.2 Significant mitigation is included within the ESS units and the ESS safety management plan, reported elsewhere in the planning documents, and ESS safety technology is rapidly improving. This significantly reduces the chances for ignition to occur and includes methods to limit the chance for overheating due to proximity. For example, many ESS units can be manufactured to contain a fire within the container or cabinet.
- 6.7.3 In the unlikely event a unit does ignite, the typical response to supress the fire (if required) is to utilise inert, non-Per- and polyfluoroalkyl substances (PFAS) products. However, the fire service may choose to use water spraying as part of the method of suppression, particularly to keep adjacent units cool and reduce the chance for them to ignite.
- 6.7.4 Alternatively, many modern energy storage units are able to remain sealed, containing fires within the unit, thus negating the spread of contaminants.
- 6.7.5 The latest, draft, National Fire Chiefs Council (NFCC) guidance recommends that fog spraying or similar should be sufficient to manage the thermal runaway of adjacent units. Fog nozzles have various flow rates but for the purposes of this assessment, they are presumed to have a rate of 6501/min.

Mitigation

- 6.7.6 The ESS units themselves would be underlain by limestone-based gravel base wrapped in an impermeable liner and served by a network of perforated pipes to ensure the system could discharge to the infiltration features.
- 6.7.7 The perforated pipes would flow to a single point of discharge in each network, which would be facilitated by a penstock chamber. The chambers would have outlet perforated pipes that would discharge to the infiltration basin.
- 6.7.8 The penstock chambers would remain open during normal conditions, to allow the passage of rainfall into the infiltration basin. However, during a fire event, the penstocks would be shut, creating a sealed system beneath the ESS units. Once the system is sealed, water in the penstock can be tested for contaminants. If they are

identified, water can be pumped out and disposed of appropriately. When contamination is at safe levels, the penstock can be released to resume the normal flow regime.

- 6.7.9 As shown in the drainage strategy, the western ESS area would have an area of approximately 9,700m². Presuming the sealed gravel base would be at least 0.5m deep with a porosity of 0.3 would result in a capacity of at least 1,400m³, sufficient for more than 36 hours of fog spraying with a pump rate of zero.
- 6.7.10 The eastern ESS areas would measure approximately 2,400m² in area. Presuming the sealed gravel base would be at least 0.4m deep with a porosity of 0.3 would result in a capacity of approximately 360m³, sufficient for more than nine hours of fog spraying with a pump rate of zero.
- 6.7.11 The gravel bases would be specified to be limestone-based. This is because the calcium carbonate content in limestone is known to be effective at neutralising HF, particularly when diluted¹.
- 6.7.12 The proposed drainage strategy, including the fire management procedures, is included in Appendix D.

6.8 Water Quality

- 6.8.1 The SuDS Manual (CIRIA C753) states that the design of surface water drainage should consider minimising contaminants in surface water runoff discharged from the Site. The level of treatment required depends on the proposed land use, according to the pollution hazard indices. To provide adequate treatment, the SuDS mitigation indices for the development must be equal to, or exceed, the pollution hazard indices.
- 6.8.2 Using a precautionary approach to runoff water quality, the closest land use in the SuDS Manual to the containers is 'other roofs'. Surface water runoff from 'other roofs' are considered by Table 26.2 of the SuDS Manual to present a Low hazard to water quality, respectively (see Table 6-2)
- 6.8.3 Table 26.4 of the SuDS Manual provides SuDS mitigation indices for various SuDS methods discharging to the ground, as summarised in Table 6-2. This shows that the nearest equivalent to gravel bases would be infiltration trenches and the nearest equivalent for infiltration basins is bioretention, these would provide sufficient mitigation of the likely pollutants expected.

Pollution Hazard Level	Total suspended solids	Metals	Hydro- carbons
------------------------------	------------------------------	--------	-------------------

¹ <u>https://prod-edam.honeywell.com/content/dam/honeywell-edam/pmt/oneam/en-us/hydrofluoric-acid/honeywell-bases-for-neutralization-of-HF-v2.pdf?download=false</u>

Land Use	Other roofs	Low	0.3	0.2	0.05
	Infiltration trenches	-	0.4	0.4	0.4
SuDS Mitigation Indices	Bioretention underlain by soil with good containment potential	-	0.8	0.8	0.8

6.9 Design for Exceedance

- 6.9.1 It is recommended the proposed infrastructure would be raised on plinths or pads which would prevent flood damage in an exceedance event.
- 6.9.2 As shown in Table 6-1 and Section 6.3, the storage capacity of the isolated gravel bases and ESS area gravel bases would exceed the volume of runoff in a design event, providing some additional capacity for an exceedance event.
- 6.9.3 In the unlikely event the capacity of the beds was exceeded, water would slowly dissipate overland onto surrounding grassed areas, where it would absorb into the ground as per the existing site and general antecedent conditions.

6.10 Maintenance Regime

- 6.10.1 Maintenance of SuDS features is essential for the operation of the surface water drainage system.
- 6.10.2 The proposed maintenance schedule is included as Table 6-2.

Table 6-4

Proposed Drainage System Maintenance Plan

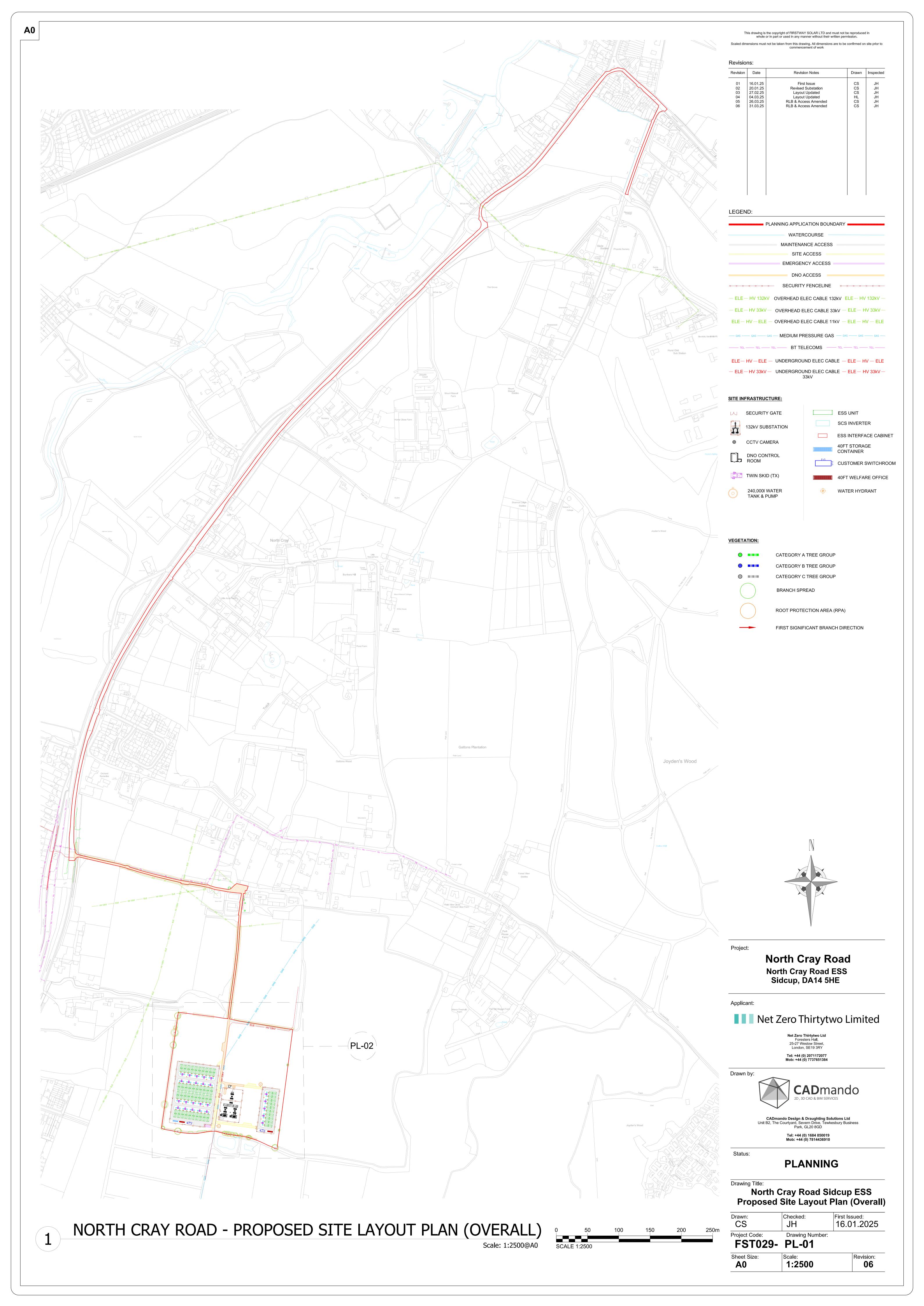
Drainage Component	Required Action	Typical Frequency
Subbase storage	Remove litter and debris from gravel beds surface	As required
	Inspect gravel surface for blockages, clogging, standing water and structural damage	Monthly
	Inspect for evidence of poor operation and/or weed growth – if required take remedial action	Every three months, 48 hours after large storms in the first six months
	Replacement of gravel	As required
	Stabilise adjacent areas	As required

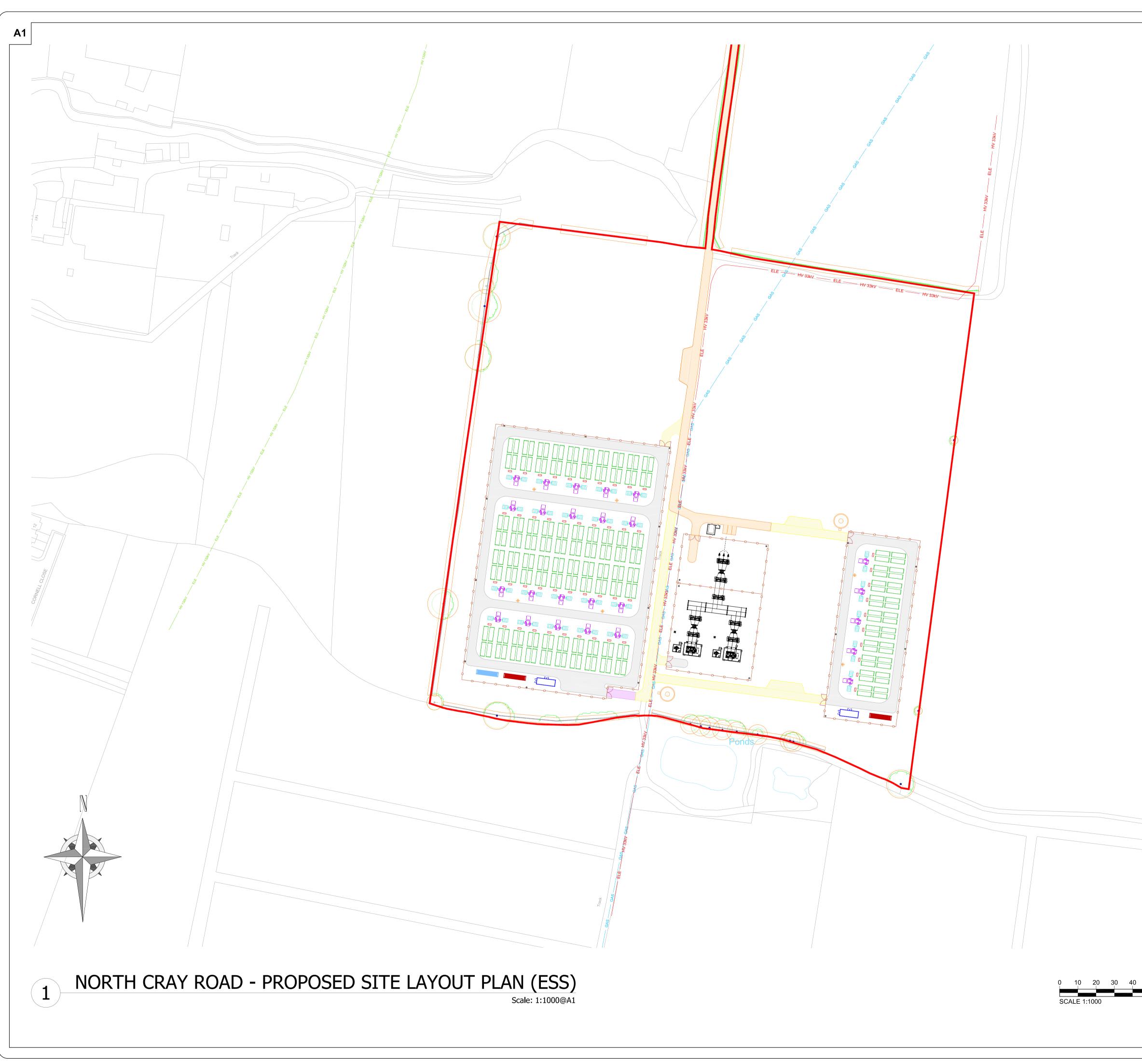
Pipework, manholes,	Remove litter and debris	As required
flow control chambers, catch pits	Clear any poor performing structures.	As required
and silt traps	Inspect all structures for poor operation	Three monthly, 48 hours after large storms in first six months
	Monitor inspection chambers. Inspect silt accumulation rates and determine silt clearance frequencies	Annually
Basins	Check for poor vegetation growth due to lack of sunlight or dropping of leaf litter and cut back adjacent vegetation where possible.	As required
	Re-seed areas of poor growth.	As required
	Repair erosion or other damage by re- turfing	As required
	Re-level uneven surfaces to reinstate design levels	As required
	Scarify and spike topsoil to improve performance, break up silt deposits and prevent compaction	As required
	Remove sediment build-up	As required
	Inspect surfaces for ponding, compaction and silt accumulation. Record areas where water is ponding for more than 48 hours	As required

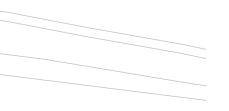
7 SUMMARY

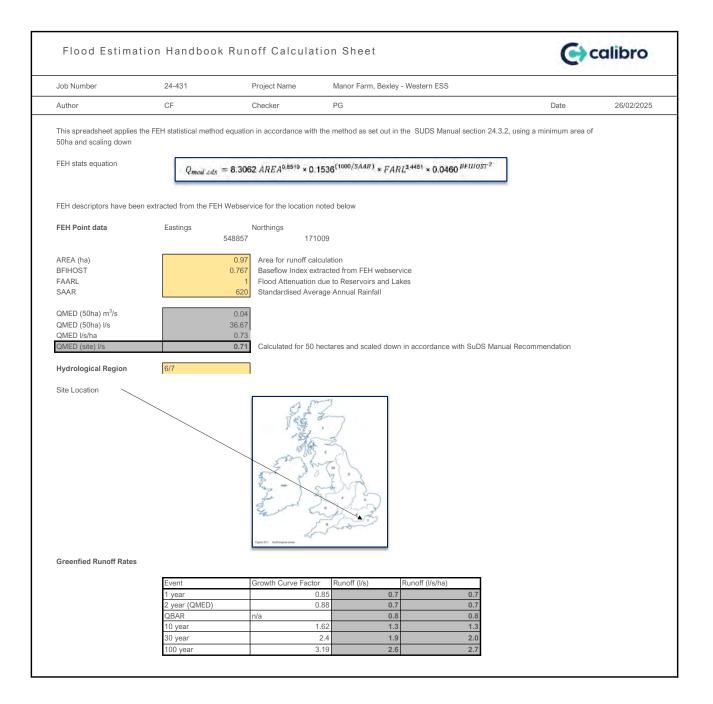
- 7.1.1 It is proposed to construct an Energy Storage System (ESS) on land off North Cray Road, Sidcup.
- 7.1.2 The entirety of the site is located in Flood Zone 1 and is considered to be at a low risk of flooding from rivers and the sea.
- 7.1.3 Parts of the site are considered to be at a mapped risk of flooding from surface water, however there is no development proposed in those areas, therefore the development is considered to be at a very low risk of surface water flooding.
- 7.1.4 The site is considered to be at a Very Low risk of groundwater flooding, flooding from sewers and flooding from artificial sources.
- 7.1.5 On account of the low flood risk posed to the site, neither the Sequential Test nor Exception Test are required for the proposals.
- 7.1.6 It is proposed that runoff from proposed isolated infrastructure will be stored in their associated gravel bases before percolating into the ground. The bases have been sized to accommodate at least the 1 in 100 year +25%, 12 hour duration, rainfall event.
- 7.1.7 The proposed drainage strategy has been designed to provide sufficient capacity for the 1 in 100 year + 40% climate change event, as per policy DP33 of the Bexley Local Plan.
- 7.1.8 For reasons of fire management, the ESS units are proposed to be sited on top of two seperate sealed gravel base networks.
- 7.1.9 The western ESS area gravel base would have a depth of 0.5m and will discharge via a hydrobrake penstock chamber into nearby underground infiltration crates with a discharge rate of 0.9/s (closest equivalent to QBar greenfield rates).
- 7.1.10 The eastern ESS gravel base measures 0.4m in depth and will discharge via a hydrobrake penstock chamber into a nearby infiltration basin measuring 1m deep with a discharge rate of 0.9l/s.
- 7.1.11 The gravel base network has been sized to accommodate at least the 1 in 100 year +25%, 12 hour duration, rainfall event and applies assumed infiltration rates of 0.018m/hr.
- 7.1.12 The proposed eastern ESS infiltration basin measures 1m deep, has a base area of approximately 55m², a crest area of approximately 167m² and has a volume capacity of 104m³. The infiltration basin has been designed to accommodate flows from the proposed gravel base network during the 1 in 100 year +25%, 12 hour duration, rainfall event.

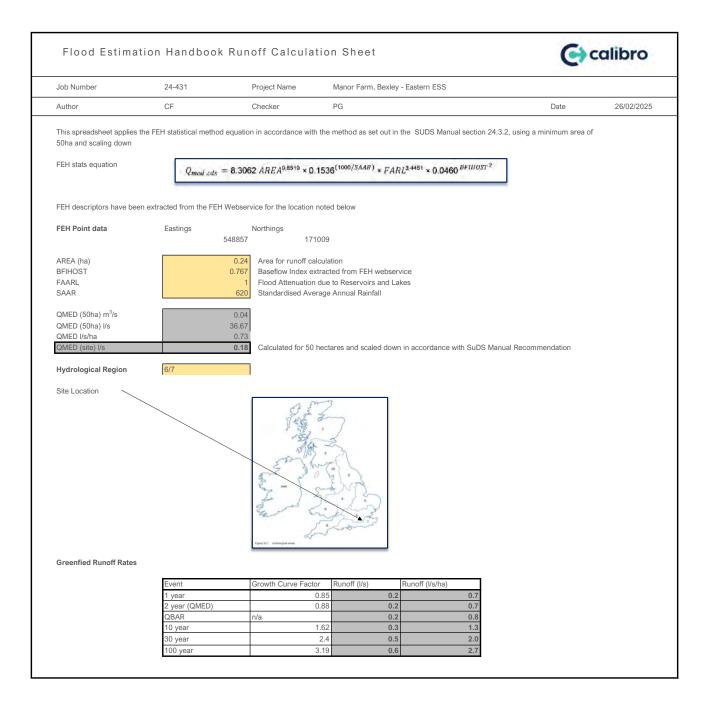
- 7.1.13 The proposed western ESS infiltration crates would have a depth of 1m, area of 200m² and capacity of 190m³.
- 7.1.14 There is an extremely low risk of ignition in the ESS units. Ignition is typically caused by thermal runaway in units. Therefore, the control of temperature can be an effective way of preventing fires spreading to additional units. The management of fires in ESS units is a rapidly improving industry, often either being self-contained in the container or using non-water based suppression. However, in accordance with relevant guidance, at this stage it is presumed that some fog water spraying suppression would be required.
- 7.1.15 A sealed drainage system is proposed through use of an impermeable membrane around the gravel underlying the ESS units and a penstock to allow the drainage system to be sealed during a fire. If contaminants are identified during monitoring and testing, water from the penstock chamber can be pumped out and subsequently removed from the site as necessary.
- 7.1.16 The eastern ESS sealed drainage system would have sufficient capacity for more than nine hours of fog spraying with zero discharge, with the western ESS being able to contain over 36 hours of fog spraying.
- 7.1.17 With the recommended measures in place the proposed development would be safe from all forms of flooding and manage runoff as close to the existing situation as reasonably practicable and therefore meets the requirements of NPPF.




APPENDICES


APPENDIX A Site Proposals


Revision	ons:				
	Date	Revisio	on Notes	Drawn	Inspected
01 02 03 04	16.01.25 20.01.25 27.02.25 04.03.25	Revised Layout	Issue Substation Updated Updated	CS CS CS H	JH JH JH
LEGEN		ANNING APPLIC		DARY	
			ACCESS		
			CY ACCESS		
— ELE-	– HV 132kV	OVERHEAD EL	EC CABLE 132	kV ELE—HV	132kV -
		OVERHEAD E			
		- OVERHEAD EL			
—— т	EL TEI	BT TEL	ECOMS	— TEL —— T	EL
		- UNDERGROU			
— ELE-	— HV 33kV —	UNDERGROU 3	ND ELEC CABL 3kV	.E — ELE— H	V 33kV -
SITE INI	FRASTRUCT		, ·		
	SECURITY	GATE		ESS UNIT SCS INVERT	ER
	SUBSTATIO			ESS INTERF	ACE CA
	DNO CONT			40FT STORA CONTAINER	GE
	ROOM 240,000I WA	ATER		CUSTOMER	SWITCH
\bigcirc	TANK & PU		<u>i </u>	40FT WELFA	
	\sum	ROOT PROTE	CTION AREA (F	RPA)	
		FIRST SIGNIFI	CANT BRANCH	H DIRECTION	
	Ν	orth C orth Cray Sidcup, D	Road E	SS	
Projec					
Applic	ant:				2.004
Applic	ant:	t Zero T		o Limit	ted
Applic	ant:	Net Zero T Forest 25-27 We	hirtytwo Ihirtytwo Ltd ers Hall, stow Street, SE19 3RY	o Limit	ed
Applic	ant:	Net Zero T Forest 25-27 We London, Tel : +44 (0)	hirtytwo Ltd ers Hall, stow Street,	o Limit	ed
Applic	ant:	Net Zero T Forest 25-27 We London, Tel: +44 (0) Mob: +44 (0)	hirtytwo Ltd ers Hall, stow Street, SE19 3RY 2071172077	ndo	ed
Applic	n by:	Net Zero T Forest 25-27 We London, Tel: +44 (0) Mob: +44 (0) Mob: +44 (0) Dob 20, 3D CADmando Design Unit B2, The Courtyan Business Tel: +44	hirtytwo Ltd ers Hall, stow Street, SE19 3RY 2071172077) 7737651384 ADDCA CAD & BIM SERVICE & Draughting Solu rd, Severn Drive, Te Park, GL20 8GD (0) 1684 850019	ndo s	ed
Applic	ant: Net	Net Zero T Forest 25-27 We London, Tel: +44 (0) Mob: +44 (0)	hirtytwo Ltd ers Hall, stow Street, SE19 3RY 2071172077) 7737651384 ADDCA CAD & BIM SERVICE & Draughting Solu rd, Severn Drive, Te Park, GL20 8GD (0) 1684 850019 4 (0) 7814436910	ndo s tions Ltd wkesbury	ed
Applic Drawn	ant: Net	Net Zero T Forest 25-27 We London, Tel: +44 (0) Mob: +44 (0)	hirtytwo Ltd ers Hall, stow Street, SE19 3RY 2071172077) 7737651384 ADDCA CAD & BIM SERVICE & Draughting Solu rd, Severn Drive, Te Park, GL20 8GD (0) 1684 850019	ndo s tions Ltd wkesbury	ed
Applic Drawn	n by: I	Net Zero T Forest 25-27 We London, Tel: +44 (0) Mob: +44 (0) CADmando Design Unit B2, The Courtyan Business Tel: +44 Mob: +44 PLA Cray Re posed Si	hirtytwo Ltd ers Hall, stow Street, SE19 3RY 2071172077) 7737651384 ADDCA CAD & BIM SERVICE & Draughting Solu d, Severn Drive, Te Park, GL20 8GD (0) 1684 850019 4 (0) 7814436910 NNING OCA Side te Layo	ndo tions Ltd wkesbury	
Applic Drawn Statu Drawi	ns:	Net Zero T Forest 25-27 We London, Tel: +44 (0) Mob: +44 (0) CADmando Design Unit B2, The Courtyan Business Tel: +44 Mob: +44 PLA Cray Re posed Si Checked: JH	hirtytwo Ltd ers Hall, stow Street, SE19 3RY 2071172077) 7737651384 ADDMA CAD & BIM SERVICE & Draughting Solu d, Severn Drive, Te Park, GL20 8GD (0) 1684 850019 0 (0) 7814436910 NNING Dadd Side ite Layo	ndo s tions Ltd wkesbury	<u> </u>
Applic Drawn Drawn Drawi Drawi Drawi Drawr CS	ant: Net by: is: ng Title: North Prop ct Code: ST029	Net Zero T Forest 25-27 We London, Tel: +44 (0) Mob: +44 (0) CADmando Design Unit B2, The Courtyan Business Tel: +44 Mob: +44 PLA Cray Re posed Si Checked: JH	hirtytwo Ltd ers Hall, stow Street, SE19 3RY 2071172077) 7737651384 ADMA CAD & BIM SERVICE & Draughting Solu d, Severn Drive, Te Park, GL20 8GD (0) 1684 850019 4 (0) 7814436910 NNNING CAD & Side ite Layo	ndo tions Ltd wkesbury cup ES ut Plan	S)25



50 60 70 80 90 100

APPENDIX B Drainage Calculations

Calibro Consultants Ltd				
Whitefriars	24-432			
Bristol	North Cray Road ESS	Sec. 1		
BS1 2NT	Western ESS Gravel Base	Micro		
Date 20/03/2025	Designed by CF	Drainage		
File 24-432-Eastern Gravel Base Netw	Checked by PG	Diamage		
XP Solutions	Source Control 2020.1			

Summary of Results for 100 year Return Period (+25%)

Half Drain Time : 1729 minutes.

	Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Σ	Max Outflow (1/s)	Max Volume (m³)	Status
15	min Su	ummer	0.126	0.126	0.0	0.9		0.9	54.6	Flood Risk
30	min Su	ummer	0.153	0.153	0.0	0.9		0.9	74.4	Flood Risk
60	min Su	ummer	0.181	0.181	0.0	0.9		0.9	94.3	Flood Risk
120	min Su	ummer	0.208	0.208	0.0	0.9		0.9	114.1	Flood Risk
180	min Su	ummer	0.227	0.227	0.0	0.9		0.9	127.7	Flood Risk
240	min Su	ummer	0.240	0.240	0.0	0.9		0.9	137.1	Flood Risk
360	min Su	ummer	0.255	0.255	0.0	0.9		0.9	147.7	Flood Risk
480	min Su	ummer	0.263	0.263	0.0	0.9		0.9	153.1	Flood Risk
600	min Su	ummer	0.267	0.267	0.0	0.9		0.9	155.9	Flood Risk
720	min Su	ummer	0.268	0.268	0.0	0.9		0.9	157.2	Flood Risk
960	min Su	ummer	0.268	0.268	0.0	0.9		0.9	157.1	Flood Risk
1440	min Su	ummer	0.259	0.259	0.0	0.9		0.9	150.1	Flood Risk
2160	min Su	ummer	0.244	0.244	0.0	0.9		0.9	139.6	Flood Risk
2880	min Su	ummer	0.232	0.232	0.0	0.9		0.9	131.0	Flood Risk
4320	min Su	ummer	0.211	0.211	0.0	0.9		0.9	116.0	Flood Risk
5760	min Su	ummer	0.193	0.193	0.0	0.9		0.9	103.1	Flood Risk
7200	min Su	ummer	0.177	0.177	0.0	0.9		0.9	91.4	Flood Risk
8640	min Su	ummer	0.163	0.163	0.0	0.9		0.9	81.2	Flood Risk
10080	min Su	ummer	0.150	0.150	0.0	0.9		0.9	72.4	Flood Risk
15	min Wi	inter	0.137	0.137	0.0	0.9		0.9	62.7	Flood Risk
30	min Wi	inter	0.168	0.168	0.0	0.9		0.9	84.9	Flood Risk
60	min Wi	inter	0.199	0.199	0.0	0.9		0.9	107.2	Flood Risk

	Storm Event		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)
15	min	Summer	149.545	0.0	54.7	19
30	min	Summer	97.406	0.0	70.9	34
60	min	Summer	60.421	0.0	96.5	64
120	min	Summer	36.418	0.0	118.4	124
180	min	Summer	27.275	0.0	133.4	184
240	min	Summer	22.123	0.0	141.8	244
360	min	Summer	16.204	0.0	144.5	362
480	min	Summer	12.883	0.0	142.2	482
600	min	Summer	10.747	0.0	139.9	602
720	min	Summer	9.252	0.0	137.8	722
960	min	Summer	7.290	0.0	134.0	962
1440	min	Summer	5.175	0.0	127.7	1398
2160	min	Summer	3.683	0.0	215.9	1668
2880	min	Summer	2.902	0.0	224.3	2044
4320	min	Summer	2.086	0.0	232.5	2852
5760	min	Summer	1.659	0.0	245.8	3632
7200	min	Summer	1.391	0.0	252.6	4400
8640	min	Summer	1.210	0.0	258.5	5192
10080	min	Summer	1.080	0.0	264.1	5952
15	min	Winter	149.545	0.0	62.1	19
30	min	Winter	97.406	0.0	74.9	34
60	min	Winter	60.421	0.0	109.5	64

©1982-2020 Innovyze

Calibro Consultants Ltd	Page 2	
Whitefriars	24-432	
Bristol	North Cray Road ESS	the second
BS1 2NT	Western ESS Gravel Base	Mirro
Date 20/03/2025	Designed by CF	Desinado
File 24-432-Eastern Gravel Base Netw	Checked by PG	Diamage
XP Solutions	Source Control 2020.1	

Summary of Results for 100 year Return Period (+25%)

	Storm Event	Max Level (m)	Max Depth (m)	Max Infiltration (l/s)	Max Control (l/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
120	min Wint	er 0.230	0.230	0.0	0.9	0.9	129.7	Flood Risk
180	min Wint	er 0.252	0.252	0.0	0.9	0.9	145.3	Flood Risk
240	min Wint	er 0.267	0.267	0.0	0.9	0.9	156.2	Flood Risk
360	min Wint	er 0.284	0.284	0.0	0.9	0.9	168.7	Flood Risk
480	min Wint	er 0.293	0.293	0.0	0.9	0.9	175.2	Flood Risk
600	min Wint	er 0.299	0.299	0.0	0.9	0.9	178.9	Flood Risk
720	min Wint	er 0.301	0.301	0.0	0.9	0.9	180.9	Flood Risk
960	min Wint	er 0.303	0.303	0.0	0.9	0.9	181.9	Flood Risk
1440	min Wint	er 0.296	0.296	0.0	0.9	0.9	176.9	Flood Risk
2160	min Wint	er 0.279	0.279	0.0	0.9	0.9	164.9	Flood Risk
2880	min Wint	er 0.262	0.262	0.0	0.9	0.9	152.8	Flood Risk
4320	min Wint	er 0.232	0.232	0.0	0.9	0.9	130.9	Flood Risk
5760	min Wint	er 0.204	0.204	0.0	0.9	0.9	111.1	Flood Risk
7200	min Wint	er 0.179	0.179	0.0	0.9	0.9	92.9	Flood Risk
8640	min Wint	er 0.157	0.157	0.0	0.9	0.9	77.0	Flood Risk
10080	min Wint	er 0.138	0.138	0.0	0.9	0.9	63.3	Flood Risk

	Stor Even		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)
120	min	Winter	36.418	0.0	133.3	122
180	min	Winter	27.275	0.0	144.9	180
240	min	Winter	22.123	0.0	145.6	240
360	min	Winter	16.204	0.0	141.9	358
480	min	Winter	12.883	0.0	139.2	476
600	min	Winter	10.747	0.0	137.0	592
720	min	Winter	9.252	0.0	135.1	708
960	min	Winter	7.290	0.0	131.7	936
1440	min	Winter	5.175	0.0	125.8	1384
2160	min	Winter	3.683	0.0	244.3	2008
2880	min	Winter	2.902	0.0	252.3	2244
4320	min	Winter	2.086	0.0	245.3	3112
5760	min	Winter	1.659	0.0	280.6	3976
7200	min	Winter	1.391	0.0	289.1	4760
8640	min	Winter	1.210	0.0	296.8	5536
10080	min	Winter	1.080	0.0	304.1	6256

Calibro Consultants Ltd		Page 3
Whitefriars	24-432	
Bristol	North Cray Road ESS	The second
BS1 2NT	Western ESS Gravel Base	Micco
Date 20/03/2025	Designed by CF	
File 24-432-Eastern Gravel Base Netw	Checked by PG	Diamage
XP Solutions	Source Control 2020.1	
I	Rainfall Details	

Rainfall Model		FEH	Winter Storms	Yes
Return Period (years)		100	Cv (Summer)	0.750
FEH Rainfall Version		2013	Cv (Winter)	0.840
Site Location	GB 548707 170729 T	2 48707 70729	Shortest Storm (mins)	15
Data Type		Point	Longest Storm (mins)	10080
Summer Storms		Yes	Climate Change %	+25

<u>Time Area Diagram</u>

Total Area (ha) 0.240

Time	(mins)	Area
From:	To:	(ha)

0 4 0.240

Calibro Consult	ants Ltd						Page 4
Whitefriars			24-432				
Bristol			North Cray	Road ES	S		Sector Sector
BS1 2NT			Western ES	S Gravel	Base		Mirco
Date 20/03/2025			Designed k	Designed by CF			
File 24-432-Eas	tern Gravel E	Base Netw	. Checked by	PG			Diamage
XP Solutions			Source Con		0.1		
			Model Deta	ils			
		Storage is	s Online Cover	Level (m)	0.400		
		Poro	us Car Park	<u>Structur</u>	<u>`e</u>		
	Infiltration Co	pefficient Ba	se (m/hr) 0.00	000	Wic	dth (m) 80.0	
	Membran	ne Percolatio	,	000	-	gth (m) 30.0	
		Max Percolat		6.7 2.0 Demos	-	e (1:X) 300.0	
		Sale	ty Factor Porosity C		ssion Storag aporation (m		
		Invert	Level (m) 0.		Membrane Dep	-	
		<u>Hydro-Brał</u>	ke® Optimum	<u>)utflow (</u>	<u>Control</u>		
		-	-	MD QUE 004		0000	
			nit Reference sign Head (m)	MD-SHE-003	52-9000-0400	0.400	
			gn Flow (l/s)			0.9	
			Flush-Flo™		Calcu	ulated	
			-	Minimise	upstream st	-	
		q	Application ump Available		Su	irface Yes	
			Diameter (mm)			52	
		Inv	ert Level (m)			0.000	
		-	Diameter (mm)			75	
	Sugge	sted Manhole	Diameter (mm)			1200	
Con	trol Points	Head (m) I	?low (l/s)	Control	Points	Head (m) Fl	.ow (1/s)
Design P	oint (Calculate		0.9		Kick-Flo	® 0.270	0.8
	Flush-Fl	0.116	0.9 Mea	1 Flow ove	er Head Rang	e –	0.8
The hydrological	calculations h	ave been base	ed on the Head	Discharge	relationsh:	ip for the Hy [,]	dro-Brake® Optimu
as specified. S	hould another t	ype of contro	ol device othe:	-			tilised then thes
storage routing	calculations wi	ll be invalio	lated				
Depth (m) Flow	(l/s) Depth (m)	Flow (l/s)	Depth (m) Flow	(l/s) Deg	pth (m) Flow	w (l/s) Depth	(m) Flow (l/s)
0.100	0.9 0.800	1.2	2.000	1.9	4.000	2.5 7	.000 3.4
0.200	0.9 1.000		2.200	1.9	4.500		.500 3.5
	0.8 1.200	1.5	2.400	2.0	5.000	2.8 8	.000 3.6
0.300				_			
0.400	0.9 1.400	1.6	2.600	2.1	5.500	3.0 8	.500 3.7
		1.6 1.7	2.600 3.000 3.500	2.1 2.2 2.4		3.0 8 3.1 9	

Calibro Consultants Ltd							
Whitefriars	24-432						
Bristol	North Cray Road ESS	Constanting of the second					
BS1 2NT	Eastern Infiltration Basin	Micro					
Date 20/03/2025	Designed by CF	Dcainago					
File 24-432-Eastern Inf Basin.SRCX	Checked by PG	Diamage					
XP Solutions	Source Control 2020.1						

Summary of Results for Input Hydrograph

Half Drain Time : 3744 minutes.

Storm Event	Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Volume (m³)	Status
Input Hydrograph	0.992	0.992	0.3	102.6	Flood Risk

Storm	Flooded	Time-Peak
Event	Volume	(mins)
	(m³)	

Input Hydrograph 0.0 2882

Calibro Consultants Ltd	Page 2	
Whitefriars	24-432	
Bristol	North Cray Road ESS	The second
BS1 2NT	Eastern Infiltration Basin	Mirro
Date 20/03/2025	Designed by CF	Desinado
File 24-432-Eastern Inf Basin.SRCX	Checked by PG	Diamage
XP Solutions	Source Control 2020.1	

Time	Flow	Time	Flow	Time	Flow	Time	Flow	Time	Flow	Time	Flow	Time	Flow	Time	Flow
(mins)	(l/s)	(mins)	(1/s)	(mins)	(l/s)	(mins)	(1/s)								
2	0.0	110	0.0	218	0.5	326	0.9	434	0.9	542	0.8	650	0.8	758	0.8
4	0.0	112	0.0	220	0.5	328	0.9	436	0.9	544	0.8	652	0.8	760	0.8
6	0.0	114	0.0	222	0.5	330	0.9	438	0.9	546	0.8	654	0.8	762	0.8
8	0.0	116	0.0	224	0.5	332	0.9	440	0.9	548	0.8	656	0.8	764	0.8
10	0.0	118	0.0	226	0.5	334	0.9	442	0.9	550	0.8	658	0.8	766	0.8
12	0.0	120	0.0	228	0.5	336	0.9	444	0.9	552	0.8	660	0.8	768	0.8
14	0.0	122	0.0	230	0.6	338	0.9	446	0.9	554	0.8	662	0.8	770	0.8
16 18	0.0	124 126	0.0	232 234	0.6 0.6	340 342	0.9 0.9	448 450	0.9 0.9	556 558	0.8 0.8	664 666	0.8 0.8	772	0.8 0.8
20	0.0	120	0.0	234	0.6	344	0.9	452	0.9	560	0.8	668	0.8	776	0.8
22	0.0	130	0.0	238	0.6	346	0.9	454	0.9	562	0.8	670	0.8	778	0.8
24	0.0	132	0.0	240	0.6	348	0.9	456	0.9	564	0.8	672	0.8	780	0.8
26	0.0	134	0.0	242	0.6	350	0.9	458	0.9	566	0.8	674	0.8	782	0.8
28	0.0	136	0.0	244	0.6	352	0.9	460	0.9	568	0.8	676	0.8	784	0.8
30	0.0	138	0.0	246	0.6	354	0.9	462	0.9	570	0.8	678	0.8	786	0.8
32	0.0	140	0.0	248	0.6	356	0.9	464	0.9	572	0.8	680	0.8	788	0.8
34	0.0	142	0.0	250	0.6	358	0.9	466	0.9	574	0.8	682	0.8	790	0.8
36 38	0.0	144 146	0.0	252 254	0.7 0.7	360 362	0.9 0.9	468 470	0.9 0.9	576 578	0.8 0.8	684 686	0.8 0.8	792 794	0.8 0.8
30 40	0.0	140	0.0	256	0.7	364	0.9	470	0.9	580	0.8	688	0.8	794	0.8
42	0.0	150	0.0	258	0.7	366	0.9	474	0.9	582	0.8	690	0.8	798	0.8
44	0.0	152	0.0	260	0.7	368	0.9	476	0.9	584	0.8	692	0.8	800	0.8
46	0.0	154	0.0	262	0.7	370	0.9	478	0.9	586	0.8	694	0.8	802	0.8
48	0.0	156	0.1	264	0.7	372	0.9	480	0.9	588	0.8	696	0.8	804	0.8
50	0.0	158	0.1	266	0.7	374	0.9	482	0.9	590	0.8	698	0.8	806	0.8
52	0.0	160	0.1	268	0.7	376	0.9	484	0.9	592	0.8	700	0.8	808	0.8
54	0.0	162	0.1	270	0.7	378	0.9	486	0.9	594	0.8	702	0.8	810	0.8
56 58	0.0	164 166	0.1	272 274	0.7 0.7	380 382	0.9 0.9	488	0.9 0.9	596 598	0.8 0.8	704 706	0.8 0.8	812 814	0.8 0.8
50 60	0.0	168	0.2	274	0.7	384	0.9	490 492	0.9	600	0.8	708	0.8	816	0.8
62	0.0	170	0.2	278	0.7	386	0.9	494	0.9	602	0.8	710	0.8	818	0.8
64	0.0	172	0.2	280	0.8	388	0.9	496	0.9	604	0.8	712	0.8	820	0.8
66	0.0	174	0.2	282	0.8	390	0.9	498	0.9	606	0.8	714	0.8	822	0.8
68	0.0	176	0.2	284	0.8	392	0.9	500	0.9	608	0.8	716	0.8	824	0.8
70	0.0	178	0.3	286	0.8	394	0.9	502	0.9	610	0.8	718	0.8	826	0.8
72	0.0	180	0.3	288	0.8	396	0.9	504	0.9	612	0.8	720	0.8	828	0.8
74	0.0	182	0.3	290	0.8	398	0.9	506	0.9	614	0.8	722	0.8	830	0.8
76	0.0	184	0.3	292	0.8	400	0.9	508	0.9	616	0.8	724	0.8	832	0.8
78 80	0.0	186 188	0.3 0.3	294 296	0.8 0.8	402 404	0.9 0.9	510 512	0.9 0.9	618 620	0.8 0.8	726 728	0.8 0.8	834 836	0.8 0.8
82	0.0	190	0.3	298	0.8	404	0.9	512	0.9	622	0.8	730	0.8	838	0.8
84	0.0	192	0.4	300	0.8	408	0.9	516	0.9	624	0.8	732	0.8	840	0.8
86	0.0	194	0.4	302	0.8	410	0.9	518	0.9	626	0.8	734	0.8	842	0.8
88	0.0	196	0.4	304	0.8	412	0.9	520	0.9	628	0.8	736	0.8	844	0.8
90	0.0	198	0.4	306	0.9	414	0.9	522	0.9	630	0.8	738	0.8	846	0.8
92	0.0	200	0.4	308	0.9	416	0.9	524	0.9	632	0.8	740	0.8	848	0.8
94	0.0	202	0.4	310	0.9	418	0.9	526	0.9	634	0.8	742	0.8	850	0.8
96	0.0	204	0.4	312	0.9	420	0.9	528	0.9	636	0.8	744	0.8	852	0.8
98 100	0.0 0.0	206 208	0.4 0.4	314 316	0.9 0.9	422 424	0.9 0.9	530 532	0.9 0.9	638 640	0.8 0.8	746 748	0.8 0.8	854 856	0.8 0.8
100	0.0	208	0.4	316	0.9	424	0.9	532 534	0.9	640 642	0.8	748	0.8	858	0.8
102	0.0	210	0.5	320	0.9	420	0.9	536	0.9	644	0.8	752	0.8	860	0.8
106	0.0	214	0.5	322	0.9	430	0.9	538	0.9	646	0.8	754	0.8	862	0.8
108	0.0	216	0.5	324	0.9		0.9	540	0.9	648	0.8	756	0.8	864	0.8
						©1983	2-2020) Innov	vyze						

Calibro Consultants Ltd	Page 3	
Whitefriars	24-432	
Bristol	North Cray Road ESS	Sec. and
BS1 2NT	Eastern Infiltration Basin	Micco
Date 20/03/2025	Designed by CF	Desinado
File 24-432-Eastern Inf Basin.SRCX	Checked by PG	Diamaye
XP Solutions	Source Control 2020.1	·

Time	Flow	Time	Flow	Time	Flow	Time	Flow	Time	Flow	Time	Flow	Time	Flow	Time	Flow
(mins)	(1/s)	(mins)	(1/s)	(mins)	(1/s)	(mins)	(1/s)	(mins)	(1/s)	(mins)	(1/s)	(mins)	(l/s)	(mins)	(l/s)
866	0.8	974	0.8	1082	0.8	1190	0.8	1298	0.8	1406	0.8	1514	0.8	1622	0.8
868	0.8	976	0.8	1084	0.8	1192	0.8	1300	0.8	1408	0.8	1516	0.8	1624	0.8
870	0.8	978	0.8	1086	0.8	1194	0.8	1302	0.8	1410	0.8	1518	0.8	1626	0.8
872	0.8	980	0.8	1088	0.8	1196	0.8	1304	0.8	1412	0.8	1520	0.8	1628	0.8
874	0.8	982	0.8	1090	0.8	1198	0.8	1306	0.8	1414	0.8	1522	0.8	1630	0.8
876	0.8	984	0.8	1092	0.8	1200	0.8	1308	0.8	1416	0.8	1524	0.8	1632	0.8
878	0.8	986	0.8	1094	0.8	1202	0.8	1310	0.8	1418	0.8	1526	0.8	1634	0.8
880 882	0.8 0.8	988 990	0.8 0.8	1096 1098	0.8 0.8	1204 1206	0.8 0.8	1312 1314	0.8 0.8	1420 1422	0.8 0.8	1528 1530	0.8 0.8	1636 1638	0.8 0.8
884	0.8	992	0.8	1100	0.8	1200	0.8	1314	0.8	1422	0.8	1530	0.8	1640	0.8
886	0.8	994	0.8	1102	0.8	1210	0.8	1318	0.8	1426	0.8	1534	0.8	1642	0.8
888	0.8	996	0.8	1104	0.8	1212	0.8	1320	0.8	1428	0.8	1536	0.8	1644	0.8
890	0.8	998	0.8	1106	0.8	1214	0.8	1322	0.8	1430	0.8	1538	0.8	1646	0.8
892	0.8	1000	0.8	1108	0.8	1216	0.8	1324	0.8	1432	0.8	1540	0.8	1648	0.8
894	0.8	1002	0.8	1110	0.8	1218	0.8	1326	0.8	1434	0.8	1542	0.8	1650	0.8
896	0.8	1004	0.8	1112	0.8	1220	0.8	1328	0.8	1436	0.8	1544	0.8	1652	0.8
898	0.8	1006	0.8	1114	0.8	1222	0.8	1330	0.8	1438	0.8	1546	0.8	1654	0.8
900	0.8	1008	0.8	1116	0.8	1224	0.8	1332	0.8	1440	0.8	1548	0.8	1656	0.8
902	0.8	1010	0.8	1118	0.8	1226	0.8	1334	0.8	1442	0.8	1550	0.8	1658	0.8
904	0.8	1012	0.8	1120	0.8	1228	0.8	1336	0.8	1444	0.8	1552	0.8	1660	0.8
906	0.8	1014	0.8	1122	0.8	1230	0.8	1338	0.8	1446	0.8	1554	0.8	1662	0.8
908	0.8	1016	0.8	1124	0.8	1232	0.8	1340	0.8	1448	0.8	1556	0.8	1664	0.8
910	0.8	1018	0.8	1126	0.8	1234	0.8	1342	0.8	1450	0.8	1558	0.8	1666	0.8
912 914	0.8 0.8	1020 1022	0.8 0.8	1128 1130	0.8 0.8	1236 1238	0.8 0.8	1344 1346	0.8 0.8	1452 1454	0.8 0.8	1560 1562	0.8 0.8	1668 1670	0.8 0.8
914	0.8	1022	0.8	1130	0.8	1230	0.8	1340	0.8	1454	0.8	1564	0.8	1672	0.8
918	0.8	1021	0.8	1134	0.8	1242	0.8	1350	0.8	1458	0.8	1566	0.8	1674	0.8
920	0.8	1028	0.8	1136	0.8	1244	0.8	1352	0.8	1460	0.8	1568	0.8	1676	0.8
922	0.8	1030	0.8	1138	0.8	1246	0.8	1354	0.8	1462	0.8	1570	0.8	1678	0.8
924	0.8	1032	0.8	1140	0.8	1248	0.8	1356	0.8	1464	0.8	1572	0.8	1680	0.8
926	0.8	1034	0.8	1142	0.8	1250	0.8	1358	0.8	1466	0.8	1574	0.8	1682	0.8
928	0.8	1036	0.8	1144	0.8	1252	0.8	1360	0.8	1468	0.8	1576	0.8	1684	0.8
930	0.8	1038	0.8	1146	0.8	1254	0.8	1362	0.8	1470	0.8	1578	0.8	1686	0.8
932	0.8	1040	0.8	1148	0.8	1256	0.8	1364	0.8	1472	0.8	1580	0.8	1688	0.8
934	0.8	1042	0.8	1150	0.8	1258	0.8	1366	0.8	1474	0.8	1582	0.8	1690	0.8
936	0.8	1044	0.8	1152	0.8	1260	0.8	1368	0.8	1476	0.8	1584	0.8	1692	0.8
938	0.8	1046	0.8	1154	0.8	1262	0.8	1370	0.8	1478	0.8	1586	0.8	1694	0.8
940	0.8	1048	0.8	1156	0.8	1264	0.8	1372	0.8	1480	0.8	1588	0.8	1696	0.8
942	0.8	1050	0.8	1158	0.8	1266	0.8	1374	0.8	1482	0.8	1590	0.8	1698	0.8
944	0.8	1052	0.8	1160	0.8	1268	0.8	1376	0.8	1484	0.8	1592	0.8	1700	0.8
946 948	0.8 0.8	1054 1056	0.8 0.8	1162 1164	0.8 0.8	1270 1272	0.8 0.8	1378 1380	0.8 0.8	1486 1488	0.8 0.8	1594 1596	0.8 0.8	1702 1704	0.8 0.8
940	0.8	1058	0.8	1166	0.8	1272	0.8	1380	0.8	1400	0.8	1598	0.8	1704	0.8
952	0.8	1060	0.8	1168	0.8	1276	0.8	1384	0.8	1492	0.8	1600	0.8	1708	0.8
954	0.8	1062	0.8	1170	0.8	1278	0.8	1386	0.8	1494	0.8	1602	0.8	1710	0.8
956	0.8	1064	0.8	1172	0.8	1280	0.8	1388	0.8	1496	0.8	1604	0.8	1712	0.8
958	0.8	1066	0.8	1174	0.8	1282	0.8	1390	0.8	1498	0.8	1606	0.8	1714	0.8
960	0.8	1068	0.8	1176	0.8	1284	0.8	1392	0.8	1500	0.8	1608	0.8	1716	0.8
962	0.8	1070	0.8	1178	0.8	1286	0.8	1394	0.8	1502	0.8	1610	0.8	1718	0.8
964	0.8	1072	0.8	1180	0.8	1288	0.8	1396	0.8	1504	0.8	1612	0.8	1720	0.8
966	0.8	1074	0.8	1182	0.8	1290	0.8	1398	0.8	1506	0.8	1614	0.8	1722	0.8
968	0.8	1076	0.8	1184	0.8	1292	0.8	1400	0.8	1508	0.8	1616	0.8	1724	0.8
970	0.8	1078	0.8	1186	0.8	1294	0.8	1402	0.8	1510	0.8	1618	0.8	1726	0.8
972	0.8	1080	0.8	1188	0.8	1296	0.8	1404	0.8	1512	0.8	1620	0.8	1728	0.8
						©1 9 8′	2-2020) Innov	7.170						
						GT 204		,	120						

Calibro Consultants Ltd	Page 4	
Whitefriars	24-432	
Bristol	North Cray Road ESS	New York
BS1 2NT	Eastern Infiltration Basin	Mirco
Date 20/03/2025	Designed by CF	Dcainago
File 24-432-Eastern Inf Basin.SRCX	Checked by PG	Diamaye
XP Solutions	Source Control 2020.1	·

Time (mins)	Flow (1/s)														
1730	0.8	1838	0.8	1946	0.8	2054	0.8	2162	0.8	2270	0.9	2378	0.9	2486	0.9
1732 1734	0.8	1840 1842	0.8	1948	0.8	2056	0.8	2164	0.8	2272 2274	0.9	2380	0.9	2488	0.9 0.9
1734	0.8 0.8	1842	0.8 0.8	1950 1952	0.8 0.8	2058 2060	0.8 0.8	2166 2168	0.8 0.8	2274	0.9 0.9	2382 2384	0.9 0.9	2490 2492	0.9
1738	0.8	1846	0.8	1952	0.8	2000	0.8	2100	0.8	2278	0.9	2386	0.9	2492	0.9
1740	0.8	1848	0.8	1956	0.8	2062	0.8	2172	0.8	2280	0.9	2388	0.9	2496	0.9
1742	0.8	1850	0.8	1958	0.8	2066	0.8	2174	0.8	2282	0.9	2390	0.9	2498	0.9
1744	0.8	1852	0.8	1960	0.8	2068	0.8	2176	0.8	2284	0.9	2392	0.9	2500	0.9
1746	0.8	1854	0.8	1962	0.8	2070	0.8	2178	0.8	2286	0.9	2394	0.9	2502	0.9
1748	0.8	1856	0.8	1964	0.8	2072	0.8	2180	0.8	2288	0.9	2396	0.9	2504	0.9
1750	0.8	1858	0.8	1966	0.8	2074	0.8	2182	0.8	2290	0.9	2398	0.9	2506	0.9
1752	0.8	1860	0.8	1968	0.8	2076	0.8	2184	0.8	2292	0.9	2400	0.9	2508	0.9
1754	0.8	1862	0.8	1970	0.8	2078	0.8	2186	0.8	2294	0.9	2402	0.9	2510	0.9
1756	0.8	1864	0.8	1972	0.8	2080	0.8	2188	0.8	2296	0.9	2404	0.9	2512	0.9
1758	0.8	1866	0.8	1974	0.8	2082	0.8	2190	0.8	2298	0.9	2406	0.9	2514	0.9
1760	0.8	1868	0.8	1976	0.8	2084	0.8	2192	0.8	2300	0.9	2408	0.9	2516	0.9
1762	0.8	1870	0.8	1978	0.8	2086	0.8	2194	0.8	2302	0.9	2410	0.9	2518	0.9
1764 1766	0.8 0.8	1872 1874	0.8 0.8	1980 1982	0.8 0.8	2088 2090	0.8 0.8	2196 2198	0.8 0.8	2304 2306	0.9 0.9	2412 2414	0.9 0.9	2520 2522	0.9 0.9
1768	0.8	1874	0.8	1982	0.8	2090	0.8	2198	0.8	2308	0.9	2414 2416	0.9	2522	0.9
1770	0.8	1878	0.8	1986	0.8	2092	0.8	2200	0.8	2310	0.9	2410	0.9	2524	0.9
1772	0.8	1880	0.8	1988	0.8	2096	0.8	2202	0.8	2312	0.9	2420	0.9	2528	0.9
1774	0.8	1882	0.8	1990	0.8	2098	0.8	2206	0.8	2314	0.9	2422	0.9	2530	0.9
1776	0.8	1884	0.8	1992	0.8	2100	0.8	2208	0.8	2316	0.9	2424	0.9	2532	0.9
1778	0.8	1886	0.8	1994	0.8	2102	0.8	2210	0.8	2318	0.9	2426	0.9	2534	0.9
1780	0.8	1888	0.8	1996	0.8	2104	0.8	2212	0.8	2320	0.9	2428	0.9	2536	0.9
1782	0.8	1890	0.8	1998	0.8	2106	0.8	2214	0.8	2322	0.9	2430	0.9	2538	0.9
1784	0.8	1892	0.8	2000	0.8	2108	0.8	2216	0.8	2324	0.9	2432	0.9	2540	0.9
1786	0.8	1894	0.8	2002	0.8	2110	0.8	2218	0.8	2326	0.9	2434	0.9	2542	0.9
1788	0.8	1896	0.8	2004	0.8	2112	0.8	2220	0.8	2328	0.9	2436	0.9	2544	0.9
1790	0.8	1898	0.8	2006	0.8	2114	0.8	2222	0.8	2330	0.9	2438	0.9	2546	0.9
1792	0.8	1900	0.8	2008	0.8	2116	0.8	2224	0.8	2332	0.9	2440	0.9	2548	0.9
1794	0.8	1902	0.8	2010	0.8	2118	0.8	2226	0.8	2334	0.9	2442	0.9	2550	0.9
1796	0.8	1904	0.8	2012	0.8	2120 2122	0.8	2228	0.8	2336 2338	0.9	2444	0.9	2552 2554	0.9
1798 1800	0.8 0.8	1906 1908	0.8 0.8	2014 2016	0.8 0.8	2122	0.8 0.8	2230 2232	0.8 0.8	2338	0.9 0.9	2446 2448	0.9 0.9	2554 2556	0.9 0.9
1800	0.8	1908	0.8	2010	0.8	2124	0.8	2232	0.8	2340	0.9	2440	0.9	2558	0.9
1804	0.8	1912	0.8	2010	0.8	2120	0.8	2234	0.9	2344	0.9	2452	0.9	2550	0.9
1806	0.8	1914	0.8	2022	0.8	2120	0.8	2238	0.9	2346	0.9	2454	0.9	2562	0.9
1808	0.8	1916	0.8	2024	0.8	2132	0.8	2240	0.9	2348	0.9	2456	0.9	2564	0.9
1810	0.8	1918	0.8	2026	0.8	2134	0.8	2242	0.9	2350	0.9	2458	0.9	2566	0.9
1812	0.8	1920	0.8	2028	0.8	2136	0.8	2244	0.9	2352	0.9	2460	0.9	2568	0.9
1814	0.8	1922	0.8	2030	0.8	2138	0.8	2246	0.9	2354	0.9	2462	0.9	2570	0.9
1816	0.8	1924	0.8	2032	0.8	2140	0.8	2248	0.9	2356	0.9	2464	0.9	2572	0.9
1818	0.8	1926	0.8	2034	0.8	2142	0.8	2250	0.9	2358	0.9	2466	0.9	2574	0.9
1820	0.8	1928	0.8	2036	0.8	2144	0.8	2252	0.9	2360	0.9	2468	0.9	2576	0.9
1822	0.8	1930	0.8	2038	0.8	2146	0.8	2254	0.9	2362	0.9	2470	0.9	2578	0.9
1824	0.8	1932	0.8	2040	0.8	2148	0.8	2256	0.9	2364	0.9	2472	0.9	2580	0.9
1826	0.8	1934	0.8	2042	0.8	2150	0.8	2258	0.9	2366	0.9	2474	0.9	2582	0.9
1828	0.8	1936	0.8	2044	0.8	2152	0.8	2260	0.9	2368	0.9	2476	0.9	2584	0.9
1830	0.8	1938 1940	0.8 0.8	2046	0.8	2154 2156	0.8 0.8	2262 2264	0.9	2370 2372	0.9 0.9	2478	0.9 0.9	2586 2588	0.9 0.9
1832 1834	0.8 0.8	1940 1942	0.8	2048 2050	0.8 0.8	2156 2158	0.8	2264 2266	0.9 0.9	2372	0.9	2480 2482	0.9	2588 2590	0.9
1834 1836	0.8	1942 1944	0.8	2050	0.8	2158 2160	0.8	2266	0.9		0.9	2482 2484	0.9	2590 2592	0.9
1020	0.0	1 1011	0.0	2002	0.0		I			2370	0.9	2101	0.9	2002	0.0
						©1982	2-2020) Innov	yze						

Calibro Consultants Ltd	Page 5	
Whitefriars	24-432	
Bristol	North Cray Road ESS	the second
BS1 2NT	Eastern Infiltration Basin	Mirco
Date 20/03/2025	Designed by CF	Dcainago
File 24-432-Eastern Inf Basin.SRCX	Checked by PG	Diamaye
XP Solutions	Source Control 2020.1	

Time (mins)	Flow (1/s)														
·/	(=/=/	((=/ =/	((=/ =/	((=/ =/	((-/-/	((=/ =/	((=/=/	((_/ -/
2594	0.9	2630	0.9	2666	0.9	2702	0.9	2738	0.9	2774	0.9	2810	0.9	2846	0.9
2596	0.9	2632	0.9	2668	0.9	2704	0.9	2740	0.9	2776	0.9	2812	0.9	2848	0.9
2598	0.9	2634	0.9	2670	0.9	2706	0.9	2742	0.9	2778	0.9	2814	0.9	2850	0.9
2600	0.9	2636	0.9	2672	0.9	2708	0.9	2744	0.9	2780	0.9	2816	0.9	2852	0.9
2602	0.9	2638	0.9	2674	0.9	2710	0.9	2746	0.9	2782	0.9	2818	0.9	2854	0.9
2604	0.9	2640	0.9	2676	0.9	2712	0.9	2748	0.9	2784	0.9	2820	0.9	2856	0.9
2606	0.9	2642	0.9	2678	0.9	2714	0.9	2750	0.9	2786	0.9	2822	0.9	2858	0.9
2608	0.9	2644	0.9	2680	0.9	2716	0.9	2752	0.9	2788	0.9	2824	0.9	2860	0.9
2610	0.9	2646	0.9	2682	0.9	2718	0.9	2754	0.9	2790	0.9	2826	0.9	2862	0.9
2612	0.9	2648	0.9	2684	0.9	2720	0.9	2756	0.9	2792	0.9	2828	0.9	2864	0.9
2614	0.9	2650	0.9	2686	0.9	2722	0.9	2758	0.9	2794	0.9	2830	0.9	2866	0.9
2616	0.9	2652	0.9	2688	0.9	2724	0.9	2760	0.9	2796	0.9	2832	0.9	2868	0.9
2618	0.9	2654	0.9	2690	0.9	2726	0.9	2762	0.9	2798	0.9	2834	0.9	2870	0.9
2620	0.9	2656	0.9	2692	0.9	2728	0.9	2764	0.9	2800	0.9	2836	0.9	2872	0.9
2622	0.9	2658	0.9	2694	0.9	2730	0.9	2766	0.9	2802	0.9	2838	0.9	2874	0.9
2624	0.9	2660	0.9	2696	0.9	2732	0.9	2768	0.9	2804	0.9	2840	0.9	2876	0.9
2626	0.9	2662	0.9	2698	0.9	2734	0.9	2770	0.9	2806	0.9	2842	0.9	2878	0.9
2628	0.9	2664	0.9	2700	0.9	2736	0.9	2772	0.9	2808	0.9	2844	0.9	2880	0.9
								•							

Calibro Consultants Ltd								
24-432								
North Cray Road ESS	Sec. 1							
Eastern Infiltration Basin	Micro							
Designed by CF	Drainage							
Checked by PG	Diamaye							
Source Control 2020.1								
	North Cray Road ESS Eastern Infiltration Basin Designed by CF Checked by PG							

Model Details

Storage is Online Cover Level (m) 1.000

Infiltration Basin Structure

Invert Level (m) 0.000 Safety Factor 5.0 Infiltration Coefficient Base (m/hr) 0.01800 Porosity 1.00 Infiltration Coefficient Side (m/hr) 0.01800

Depth (m) Area (m^2) Depth (m) Area (m^2)

0.000	55.0	1.000	162.1

Calibro Consultants Ltd	Page 1	
Whitefriars	24-432	C
Bristol	North Cray Road ESS	
BS1 2NT	Eastern ESS Gravel Base - Sens	Micro
Date 20/03/2025	Designed by CF	Dcainago
File 24-432-Eastern Gravel Base Netw	Checked by PG	Diamage
XP Solutions	Source Control 2020.1	

Summary of Results for 100 year Return Period (+40%)

Half Drain Time : 1992 minutes.

	Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (l/s)	Max Control (l/s)	Σ	Max Outflow (1/s)	Max Volume (m³)	Status
15	min S	Summer	0.137	0.137	0.0	0.9		0.9	62.7	Flood Risk
30	min S	Summer	0.168	0.168	0.0	0.9		0.9	84.9	Flood Risk
60	min S	Summer	0.199	0.199	0.0	0.9		0.9	107.3	Flood Risk
120	min S	Summer	0.230	0.230	0.0	0.9		0.9	129.7	Flood Risk
180	min S	Summer	0.252	0.252	0.0	0.9		0.9	145.3	Flood Risk
240	min S	Summer	0.267	0.267	0.0	0.9		0.9	156.2	Flood Risk
360	min S	Summer	0.284	0.284	0.0	0.9		0.9	168.7	Flood Risk
480	min S	Summer	0.293	0.293	0.0	0.9		0.9	175.2	Flood Risk
600	min S	Summer	0.298	0.298	0.0	0.9		0.9	178.9	Flood Risk
720	min S	Summer	0.301	0.301	0.0	0.9		0.9	180.8	Flood Risk
960	min S	Summer	0.302	0.302	0.0	0.9		0.9	181.6	Flood Risk
1440	min S	Summer	0.295	0.295	0.0	0.9		0.9	176.3	Flood Risk
2160	min S	Summer	0.280	0.280	0.0	0.9		0.9	165.5	Flood Risk
2880	min S	Summer	0.266	0.266	0.0	0.9		0.9	155.9	Flood Risk
4320	min S	Summer	0.244	0.244	0.0	0.9		0.9	139.4	Flood Risk
5760	min S	Summer	0.225	0.225	0.0	0.9		0.9	125.8	Flood Risk
7200	min S	Summer	0.208	0.208	0.0	0.9		0.9	113.5	Flood Risk
8640	min S	Summer	0.193	0.193	0.0	0.9		0.9	102.8	Flood Risk
10080	min S	Summer	0.180	0.180	0.0	0.9		0.9	93.3	Flood Risk
15	min W	Vinter	0.150	0.150	0.0	0.9		0.9	71.7	Flood Risk
		Vinter			0.0	0.9		0.9		Flood Risk
60		Vinter			0.0	0.9		0.9		Flood Risk

	Storm Event			Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)
15	min	Summer	167.490	0.0	62.1	19
30	min	Summer	109.094	0.0	74.9	34
60	min	Summer	67.671	0.0	109.5	64
120	min	Summer	40.788	0.0	133.3	124
180	min	Summer	30.548	0.0	144.9	184
240	min	Summer	24.778	0.0	145.4	244
360	min	Summer	18.148	0.0	141.7	362
480	min	Summer	14.429	0.0	138.9	482
600	min	Summer	12.037	0.0	136.7	602
720	min	Summer	10.362	0.0	134.7	722
960	min	Summer	8.165	0.0	131.3	962
1440	min	Summer	5.796	0.0	125.0	1440
2160	min	Summer	4.125	0.0	244.1	1816
2880	min	Summer	3.251	0.0	251.2	2164
4320	min	Summer	2.336	0.0	239.4	2936
5760	min	Summer	1.858	0.0	280.2	3696
7200	min	Summer	1.558	0.0	288.7	4536
8640	min	Summer	1.355	0.0	296.2	5280
10080	min	Summer	1.209	0.0	303.3	6056
15	min	Winter	167.490	0.0	69.1	19
30	min	Winter	109.094	0.0	75.9	34
60	min	Winter	67.671	0.0	123.9	64
		-	1000 00	20 T	-	

©1982-2020 Innovyze

Calibro Consultants Ltd	Page 2	
Whitefriars	24-432	C
Bristol	North Cray Road ESS	the second
BS1 2NT	Eastern ESS Gravel Base - Sens	Micro
Date 20/03/2025	Designed by CF	Desinado
File 24-432-Eastern Gravel Base Netw	Checked by PG	Diamaye
XP Solutions	Source Control 2020.1	

Summary of Results for 100 year Return Period (+40%)

	Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (l/s)	Max Control (l/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
120	min V	Winter	0.255	0.255	0.0	0.9	0.9	147.3	Flood Risk
180	min V	Winter	0.279	0.279	0.0	0.9	0.9	165.1	Flood Risk
240	min V	Winter	0.297	0.297	0.0	0.9	0.9	177.5	Flood Risk
360	min V	Winter	0.316	0.316	0.0	0.9	0.9	191.8	Flood Risk
480	min V	Winter	0.327	0.327	0.0	0.9	0.9	199.6	Flood Risk
600	min V	Winter	0.333	0.333	0.0	0.9	0.9	204.1	Flood Risk
720	min V	Winter	0.337	0.337	0.0	0.9	0.9	206.7	Flood Risk
960	min V	Winter	0.340	0.340	0.0	0.9	0.9	208.7	Flood Risk
1440	min V	Winter	0.334	0.334	0.0	0.9	0.9	204.8	Flood Risk
2160	min V	Winter	0.319	0.319	0.0	0.9	0.9	193.6	Flood Risk
2880	min V	Winter	0.303	0.303	0.0	0.9	0.9	181.9	Flood Risk
4320	min V	Winter	0.274	0.274	0.0	0.9	0.9	161.3	Flood Risk
5760	min V	Winter	0.244	0.244	0.0	0.9	0.9	139.8	Flood Risk
7200	min V	Winter	0.217	0.217	0.0	0.9	0.9	120.4	Flood Risk
8640	min V	Winter	0.193	0.193	0.0	0.9	0.9	103.2	Flood Risk
10080	min V	Winter	0.172	0.172	0.0	0.9	0.9	88.1	Flood Risk

	Stor Even		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)
120	min	Winter	40.788	0.0	145.3	122
180	min	Winter	30.548	0.0	145.1	182
240	min	Winter	24.778	0.0	142.5	240
360	min	Winter	18.148	0.0	139.3	358
480	min	Winter	14.429	0.0	137.2	476
600	min	Winter	12.037	0.0	135.6	592
720	min	Winter	10.362	0.0	134.1	708
960	min	Winter	8.165	0.0	131.5	940
1440	min	Winter	5.796	0.0	126.5	1386
2160	min	Winter	4.125	0.0	267.3	2028
2880	min	Winter	3.251	0.0	259.6	2304
4320	min	Winter	2.336	0.0	240.1	3240
5760	min	Winter	1.858	0.0	319.1	4088
7200	min	Winter	1.558	0.0	329.5	4904
8640	min	Winter	1.355	0.0	338.9	5704
10080	min	Winter	1.209	0.0	347.9	6456

Calibro Consultants Ltd			Page 3
Whitefriars	24-432		
Bristol	North Cray Road ESS		
BS1 2NT	Eastern ESS Gravel Base - Sens		Micco
Date 20/03/2025	Designed by CF		Desinado
File 24-432-Eastern Gravel Base Netw		Diamaye	
XP Solutions	Source Control 2020.1	I	
<u>R</u>	ainfall Details		
Rainfall Model	FEH Winter Stor	ns Ye:	S
Return Period (years)	100 Cv (Summe	c) 0.750	0
FEH Rainfall Version	2013 Cv (Winte	c) 0.840	0
Site Location GB 548707	170729 TQ 48707 70729 Shortest Storm (min	3) 15	5
Data Type	Point Longest Storm (min		
Summer Storms	Yes Climate Change	8 +4(0

Time Area Diagram

Total Area (ha) 0.240

Time	(mins)	Area
From:	To:	(ha)

0 4 0.240

Calibro Consultants Ltd		Page 4
Nhitefriars	24-432	· · · · · · · · · · · · · · · · · · ·
Bristol	North Cray Road ESS	Contraction of the second
BS1 2NT	Eastern ESS Gravel Base - Sens	Micco
Date 20/03/2025	Designed by CF	
File 24-432-Eastern Gravel Base Netw.	Checked by PG	Drainage
XP Solutions	Source Control 2020.1	
	Model Details	
Storage	is Online Cover Level (m) 0.400	
Por	cous Car Park Structure	
Infiltration Coefficient E	Base (m/hr) 0.00000 Width (m) 80.0	0
Membrane Percolati		
	ation (l/s) 666.7 Slope (1:X) 300.0	
Saf		5
Towort		3 0
TIIVELO		0
Hydro-Br;	ake® Optimum Outflow Control	
	Unit Reference MD-SHE-0052-9000-0400-9000	
Ι	Design Head (m) 0.400	
Des	sign Flow (l/s) 0.9	
	Flush-Flo™ Calculated	
	Objective Minimise upstream storage Application Surface	
	Sump Available Yes	
	Diameter (mm) 52	
II	nvert Level (m) 0.000	
Minimum Outlet Pipe		
Suggested Manhole	e Diameter (mm) 1200	
Control Points Head (m)	Flow (1/s) Control Points Head (m) H	?low (l/s)
Design Point (Calculated) 0.400	0.9 Kick-Flo® 0.270	0.8
Flush-Flo™ 0.116	0.9 Mean Flow over Head Range -	0.8
The hydrological calculations have been ba	sed on the Head/Discharge relationship for the H	vdro-Brake® Optimu
	rol device other than a Hydro-Brake Optimum® be	
as spectrica, shourd different cype of cont	idated	
storage routing calculations will be inval		
storage routing calculations will be inval	Depth (m) Flow (l/s) Depth (m) Flow (l/s) Dept	h (m) Flow (l/s)
storage routing calculations will be inval		.h (m) Flow (1/s) 7.000 3.4
storage routing calculations will be inval Depth (m) Flow (1/s) Depth (m) Flow (1/s)	2 2.000 1.9 4.000 2.5	
storage routing calculations will be inval Depth (m) Flow (1/s) 0.100 0.9 0.800 1.2	2 2.000 1.9 4.000 2.5 4 2.200 1.9 4.500 2.7	7.000 3.4
storage routing calculations will be inval Depth (m) Flow (1/s) Depth (m) Flow (1/s) 0.100 0.9 0.800 1.2 0.200 0.9 1.000 1.4 0.300 0.8 1.200 1.5 0.400 0.9 1.400 1.6	2 2.000 1.9 4.000 2.5 4 2.200 1.9 4.500 2.7 5 2.400 2.0 5.000 2.8 5 2.600 2.1 5.500 3.0	7.000 3.4 7.500 3.5 8.000 3.6 8.500 3.7
storage routing calculations will be inval Depth (m) Flow (1/s) Depth (m) Flow (1/s) 0.100 0.9 0.800 1.2 0.200 0.9 1.000 1.4 0.300 0.8 1.200 1.5	2 2.000 1.9 4.000 2.5 4 2.200 1.9 4.500 2.7 5 2.400 2.0 5.000 2.8 5 2.600 2.1 5.500 3.0 7 3.000 2.2 6.000 3.1	7.0003.47.5003.58.0003.6

Calibro Consultants Ltd	Page 1	
Whitefriars	24-432	
Bristol	North Cray Road ESS	Sec. and
BS1 2NT	Western ESS Gravel Base	Micro
Date 20/03/2025	Designed by CF	Drainage
File 24-432-Western Gravel Base Netw	Checked by PG	Diamage
XP Solutions	Source Control 2020.1	

Summary of Results for 100 year Return Period (+25%)

Half Drain Time : 6978 minutes.

	Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (l/s)	Max Outflow (1/s)	Max Volume (m³)	Status
15	min Su	ummer	0.192	0.192	0.0	1.1	1.1	222.8	0 K
30	min Su	ummer	0.224	0.224	0.0	1.1	1.1	304.4	Flood Risk
60	min Su	ummer	0.253	0.253	0.0	1.1	1.1	387.9	Flood Risk
120	min Su	ummer	0.283	0.283	0.0	1.1	1.1	474.3	Flood Risk
180	min Su	ummer	0.304	0.304	0.0	1.1	1.1	535.8	Flood Risk
240	min Su	ummer	0.319	0.319	0.0	1.1	1.1	580.3	Flood Risk
360	min Su	ummer	0.338	0.338	0.0	1.1	1.1	636.0	Flood Risk
480	min Su	ummer	0.350	0.350	0.0	1.1	1.1	670.4	Flood Risk
600	min Su	ummer	0.358	0.358	0.0	1.1	1.1	694.3	Flood Risk
720	min Su	ummer	0.364	0.364	0.0	1.1	1.1	711.9	Flood Risk
960	min Su	ummer	0.373	0.373	0.0	1.1	1.1	736.3	Flood Risk
1440	min Su	ummer	0.380	0.380	0.0	1.1	1.1	758.3	Flood Risk
2160	min Su	ummer	0.384	0.384	0.0	1.1	1.1	769.6	Flood Risk
2880	min Su	ummer	0.384	0.384	0.0	1.1	1.1	769.3	Flood Risk
4320	min Su	ummer	0.378	0.378	0.0	1.1	1.1	751.3	Flood Risk
5760	min Su	ummer	0.370	0.370	0.0	1.1	1.1	727.9	Flood Risk
7200	min Su	ummer	0.363	0.363	0.0	1.1	1.1	707.6	Flood Risk
8640	min Su	ummer	0.357	0.357	0.0	1.1	1.1	691.3	Flood Risk
10080	min Su	ummer	0.353	0.353	0.0	1.1	1.1	678.9	Flood Risk
15	min Wi	inter	0.205	0.205	0.0	1.1	1.1	255.5	Flood Risk
30	min Wi	inter	0.239	0.239	0.0	1.1	1.1	346.9	Flood Risk
60	min Wi	inter	0.271	0.271	0.0	1.1	1.1	440.6	Flood Risk

	Stor Even		Rain (mm/hr)		Discharge Volume (m³)	Time-Peak (mins)
15	min	Summer	149.545	0.0	94.1	19
30	min	Summer	97.406	0.0	92.6	34
60	min	Summer	60.421	0.0	184.2	64
120	min	Summer	36.418	0.0	179.8	124
180	min	Summer	27.275	0.0	175.3	184
240	min	Summer	22.123	0.0	170.8	244
360	min	Summer	16.204	0.0	162.9	364
480	min	Summer	12.883	0.0	158.7	484
600	min	Summer	10.747	0.0	156.5	604
720	min	Summer	9.252	0.0	155.4	724
960	min	Summer	7.290	0.0	154.6	964
1440	min	Summer	5.175	0.0	152.1	1442
2160	min	Summer	3.683	0.0	309.2	2164
2880	min	Summer	2.902	0.0	303.0	2880
4320	min	Summer	2.086	0.0	290.0	4320
5760	min	Summer	1.659	0.0	612.4	5008
7200	min	Summer	1.391	0.0	587.5	5760
8640	min	Summer	1.210	0.0	561.4	6488
10080	min	Summer	1.080	0.0	534.6	7264
15	min	Winter	149.545	0.0	93.7	19
30	min	Winter	97.406	0.0	92.0	34
60	min	Winter	60.421	0.0	182.4	64

Calibro Consultants Ltd		Page 2
Whitefriars	24-432	
Bristol	North Cray Road ESS	Sec. and
BS1 2NT	Western ESS Gravel Base	Micro
Date 20/03/2025	Designed by CF	Drainage
File 24-432-Western Gravel Base Netw	Checked by PG	Diamage
XP Solutions	Source Control 2020.1	

Summary of Results for 100 year Return Period (+25%)

	Storm Event	Max Level (m)	Max Depth (m)	Max Infiltration (l/s)	Max Control (l/s)	Max Σ Outflow (l/s)	Max Volume (m³)	Status
120	min Winter	0.304	0.304	0.0	1.1	1.1	537.9	Flood Risk
180	min Winter	0.328	0.328	0.0	1.1	1.1	607.3	Flood Risk
240	min Winter	0.346	0.346	0.0	1.1	1.1	657.7	Flood Risk
360	min Winter	0.367	0.367	0.0	1.1	1.1	720.7	Flood Risk
480	min Winter	0.381	0.381	0.0	1.1	1.1	760.0	Flood Risk
600	min Winter	0.390	0.390	0.0	1.1	1.1	787.6	Flood Risk
720	min Winter	0.397	0.397	0.0	1.1	1.1	808.2	Flood Risk
960	min Winter	0.407	0.407	0.0	1.1	1.1	837.2	Flood Risk
1440	min Winter	0.417	0.417	0.0	1.1	1.1	865.1	Flood Risk
2160	min Winter	0.423	0.423	0.0	1.1	1.1	883.2	Flood Risk
2880	min Winter	0.425	0.425	0.0	1.1	1.1	888.3	Flood Risk
4320	min Winter	0.421	0.421	0.0	1.1	1.1	879.1	Flood Risk
5760	min Winter	0.414	0.414	0.0	1.1	1.1	858.3	Flood Risk
7200	min Winter	0.405	0.405	0.0	1.1	1.1	830.8	Flood Risk
8640	min Winter	0.398	0.398	0.0	1.1	1.1	809.2	Flood Risk
10080	min Winter	0.392	0.392	0.0	1.1	1.1	792.9	Flood Risk

	Stor Even		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)
120	min	Winter	36.418	0.0	176.3	124
180	min	Winter	27.275	0.0	169.0	182
240	min	Winter	22.123	0.0	162.8	242
360	min	Winter	16.204	0.0	159.1	360
480	min	Winter	12.883	0.0	159.7	480
600	min	Winter	10.747	0.0	160.6	598
720	min	Winter	9.252	0.0	160.9	716
960	min	Winter	7.290	0.0	160.8	952
1440	min	Winter	5.175	0.0	158.3	1426
2160	min	Winter	3.683	0.0	320.6	2120
2880	min	Winter	2.902	0.0	316.5	2820
4320	min	Winter	2.086	0.0	304.2	4152
5760	min	Winter	1.659	0.0	621.3	5472
7200	min	Winter	1.391	0.0	603.8	6624
8640	min	Winter	1.210	0.0	586.7	6912
10080	min	Winter	1.080	0.0	569.3	7768

Calibro Consultants Ltd		Page 3
Whitefriars	24-432	
Bristol	North Cray Road ESS	Sec. 1
BS1 2NT	Western ESS Gravel Base	Mirro
Date 20/03/2025	Designed by CF	Drainage
File 24-432-Western Gravel Base Netw	Checked by PG	Diamaye
XP Solutions	Source Control 2020.1	-
F	Rainfall Details	

<u>Rainfall Details</u>

Rainfall Model		FEH	Winter Storms Yes
Return Period (years)		100	Cv (Summer) 0.750
FEH Rainfall Version		2013	Cv (Winter) 0.840
Site Location	GB 548707 170729 TG	2 48707 70729	Shortest Storm (mins) 15
Data Type		Point	Longest Storm (mins) 10080
Summer Storms		Yes	Climate Change % +25

<u>Time Area Diagram</u>

Total Area (ha) 0.972

Time	(mins)	Area
From:	To:	(ha)

0 4 0.972

Calibro Consultants Ltd		Page 4					
Thitefriars	24-432						
Bristol	North Cray Road ESS	The second second					
3S1 2NT	Western ESS Gravel Base	Micco					
Date 20/03/2025	Designed by CF	Desinado					
ile 24-432-Western Gravel Base Netw	Checked by PG	Digitiga					
XP Solutions	Source Control 2020.1						
	Model Details						
Storage is	Online Cover Level (m) 0.500						
Porol	<u>as Car Park Structure</u>						
Infiltration Coefficient Bas	e (m/hr) 0.00000 Width (m)	81.0					
Membrane Percolation							
	on (1/s) 2700.0 Slope (1:X) y Factor 2.0 Depression Storage (mm)	500.0					
Salet	Porosity 0.30 Evaporation (mm/day)	3					
Invert I	evel (m) 0.000 Membrane Depth (m)	0					
<u>Hydro-Brak</u>	<u>e® Optimum Outflow Control</u>						
ŢŢ	nit Reference MD-SHE-0056-1100-0500-1100						
	sign Head (m) 0.500						
Desig	yn Flow (l/s) 1.1						
	Flush-Flo™ Calculated						
	Objective Minimise upstream storage Application Surface						
S1	Imp Available Yes						
I	Diameter (mm) 56						
	ert Level (m) 0.000						
Minimum Outlet Pipe I Suggested Manhole I							
Control Points Head (m) F	low (1/s) Control Points Head	(m) Flow (l/s)					
Design Point (Calculated) 0.500		331 0.9					
Debidii rotiic (cateatacea) 0.000	1.1 Mean Flow over Head Range						
Flush-Flo™ 0.148		- 1.0					
Flush-Flo™ 0.148							
5 ,	d on the Head/Discharge relationship for t	he Hydro-Brake® Optimu					
Flush-Flo™ 0.148 The hydrological calculations have been base	d on the Head/Discharge relationship for t l device other than a Hydro-Brake Optimum®	he Hydro-Brake® Optimu					
Flush-Flo™ 0.148 The hydrological calculations have been base as specified. Should another type of contro	d on the Head/Discharge relationship for t l device other than a Hydro-Brake Optimum® ated	he Hydro-Brake® Optimu be utilised then thes					
Flush-Flo ^M 0.148 The hydrological calculations have been base as specified. Should another type of contro storage routing calculations will be invalid	d on the Head/Discharge relationship for t 1 device other than a Hydro-Brake Optimum® ated Depth (m) Flow (1/s) Depth (m) Flow (1/s) 2.000 2.1 4.000 2.8	he Hydro-Brake® Optimum be utilised then these Depth (m) Flow (1/s) 7.000 3.7					
Flush-Flo™ 0.148 The hydrological calculations have been base as specified. Should another type of contro storage routing calculations will be invalid Depth (m) Flow (1/s) Depth (m) Flow (1/s) 0.100 1.1 0.200 1.1 1.000 1.5	d on the Head/Discharge relationship for t 1 device other than a Hydro-Brake Optimum® ated 2.000 2.1 4.000 2.8 2.200 2.1 4.500 3.0	he Hydro-Brake® Optimum be utilised then these Depth (m) Flow (1/s) 7.000 3.7 7.500 3.8					
Flush-Flo™ 0.148 The hydrological calculations have been base as specified. Should another type of contro storage routing calculations will be invalid Depth (m) Flow (1/s) 0.100 1.1 0.100 1.1 0.200 1.1 1.000 1.5 0.300 1.0	d on the Head/Discharge relationship for t 1 device other than a Hydro-Brake Optimum® ated Depth (m) Flow (1/s) Depth (m) Flow (1/s) 2.000 2.1 4.000 2.8 2.200 2.1 4.500 3.0 2.400 2.2 5.000 3.1	he Hydro-Brake® Optimum be utilised then these Depth (m) Flow (1/s) 7.000 3.7 7.500 3.8 8.000 4.0					
Flush-Flo™ 0.148 The hydrological calculations have been base as specified. Should another type of contro storage routing calculations will be invalid Depth (m) Flow (1/s) Depth (m) Flow (1/s) 0.100 1.1 0.200 1.1 1.000 1.5	d on the Head/Discharge relationship for t 1 device other than a Hydro-Brake Optimum® ated 2.000 2.1 4.000 2.8 2.200 2.1 4.500 3.0	he Hydro-Brake® Optimum be utilised then these Depth (m) Flow (1/s) 7.000 3.7 7.500 3.8					

Calibro Consultants Ltd		Page 1
Whitefriars	24-432	
Bristol	North Cray Road ESS	The second second
BS1 2NT	Western Storage Crates	Mirco
Date 20/03/2025	Designed by CF	Desinado
File 24-432-Western Crates.SRCX	Checked by PG	Diamaye
XP Solutions	Source Control 2020.1	

Summary of Results for Input Hydrograph

Half Drain Time : 5221 minutes.

Storm Event	Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Volume (m³)	Status
Input Hydrograph	0.893	0.893	0.4	217.1	Flood Risk

Storm	Flooded	Time-Peak
Event	Volume	(mins)
	(m³)	

Input Hydrograph 0.0 5764

Calibro Consultants Ltd		Page 2
Whitefriars	24-432	
Bristol	North Cray Road ESS	The second
BS1 2NT	Western Storage Crates	Micro
Date 20/03/2025	Designed by CF	Desinado
File 24-432-Western Crates.SRCX	Checked by PG	Diamage
XP Solutions	Source Control 2020.1	

Time	Flow	Time	Flow	Time	Flow	Time	Flow	Time	Flow	Time	Flow	Time	Flow	Time	Flow
(mins)	(l/s)	(mins)	(1/s)	(mins)	(1/s)	(mins)	(l/s)	(mins)	(1/s)	(mins)	(1/s)	(mins)	(1/s)	(mins)	(l/s)
4	0.0	220	0.0	436	0.2	652	0.9	868	1.1	1084	1.1	1300	1.1	1516	1.0
8	0.0	224	0.0	440	0.2	656	1.0	872	1.1	1088	1.1	1304	1.1	1520	1.0
12	0.0	228	0.0	444	0.2	660	1.0	876	1.1	1092	1.1	1308	1.1	1524	1.0
16	0.0	232	0.0	448	0.3	664	1.0	880	1.1	1096	1.1	1312	1.1	1528	1.0
20	0.0	236	0.0	452	0.3	668	1.0	884	1.1	1100	1.1	1316	1.1	1532	1.0
24	0.0	240	0.0	456	0.3	672	1.0	888	1.1	1104	1.1	1320	1.1	1536	1.0
28 32	0.0	244 248	0.0	460 464	0.3 0.4	676 680	1.0	892 896	1.1 1.1	1108 1112	1.1	1324 1328	1.1 1.1	1540 1544	1.0
36	0.0	240	0.0	464	0.4	684	1.0	900	1.1	1112	1.1	1320	1.1	1544	1.0
40	0.0	252	0.0	472	0.4	688	1.0	904	1.1	1120	1.1	1336	1.1	1552	1.0
44	0.0	260	0.0	476	0.4	692	1.0	908	1.1	1124	1.1	1340	1.1	1556	1.0
48	0.0	264	0.0	480	0.5	696	1.0	912	1.1	1128	1.1	1344	1.1	1560	1.0
52	0.0	268	0.0	484	0.5	700	1.0	916	1.1	1132	1.1	1348	1.1	1564	1.0
56	0.0	272	0.0	488	0.5	704	1.0	920	1.1	1136	1.1	1352	1.1	1568	1.0
60	0.0	276	0.0	492	0.5	708	1.0	924	1.1	1140	1.1	1356	1.1	1572	1.0
64	0.0	280	0.0	496	0.5	712	1.0	928	1.1	1144	1.1	1360	1.1	1576	1.0
68	0.0	284	0.0	500	0.6	716	1.0	932	1.1	1148	1.1	1364	1.1	1580	1.0
72	0.0	288	0.0	504	0.6	720	1.0	936	1.1	1152	1.1	1368	1.1	1584	1.0
76	0.0	292	0.0	508	0.6	724 728	1.0	940	1.1	1156	1.1	1372	1.1	1588	1.0
80 84	0.0	296 300	0.0	512 516	0.6 0.6	728	1.0 1.0	944 948	1.1	1160 1164	1.1	1376 1380	1.1	1592 1596	1.0
88	0.0	300	0.0	520	0.6	736	1.0	952	1.1	1168	1.1	1384	1.1	1600	1.0
92	0.0	308	0.0	524	0.7	740	1.0	956	1.1	1172	1.1	1388	1.1	1604	1.0
96	0.0	312	0.0	528	0.7	744	1.0	960	1.1	1176	1.1	1392	1.1	1608	1.0
100	0.0	316	0.0	532	0.7	748	1.0	964	1.1	1180	1.1	1396	1.1	1612	1.0
104	0.0	320	0.0	536	0.7	752	1.0	968	1.1	1184	1.1	1400	1.1	1616	1.0
108	0.0	324	0.0	540	0.7	756	1.0	972	1.1	1188	1.1	1404	1.1	1620	1.0
112	0.0	328	0.0	544	0.7	760	1.1	976	1.1	1192	1.1	1408	1.1	1624	0.9
116	0.0	332	0.0	548	0.7	764	1.1	980	1.1	1196	1.1	1412	1.1	1628	0.9
120	0.0	336	0.0	552	0.7	768	1.1	984	1.1	1200	1.1	1416	1.0	1632	0.9
124	0.0	340	0.0	556	0.7	772	1.1	988	1.1	1204	1.1	1420	1.0	1636	0.9
128	0.0	344	0.0	560	0.8	776	1.1	992	1.1	1208	1.1	1424	1.0	1640	0.9
132	0.0	348 352	0.0	564	0.8	780 784	1.1	996	1.1	1212	1.1	1428	1.0	1644	0.9
136 140	0.0	352	0.0	568 572	0.8 0.8	788	$1.1 \\ 1.1$	1000 1004	1.1	1216 1220	1.1	1432 1436	1.0 1.0	1648 1652	0.9 0.9
144	0.0	360	0.0	576	0.8	792	1.1	1004	1.1	1220	1.1	1440	1.0	1656	0.9
148	0.0	364	0.0	580	0.8	796	1.1	1012	1.1	1228	1.1	1444	1.0	1660	0.9
152	0.0	368	0.0	584	0.8	800	1.1	1016	1.1	1232	1.1	1448	1.0	1664	0.9
156	0.0	372	0.0	588	0.8	804	1.1	1020	1.1	1236	1.1	1452	1.0	1668	0.9
160	0.0	376	0.0	592	0.8	808	1.1	1024	1.1	1240	1.1	1456	1.0	1672	0.9
164	0.0	380	0.0	596	0.8	812	1.1	1028	1.1	1244	1.1	1460	1.0	1676	0.9
168	0.0	384	0.0	600	0.8	816	1.1	1032	1.1	1248	1.1	1464	1.0	1680	0.9
172	0.0	388	0.0	604	0.9	820	1.1	1036	1.1	1252	1.1	1468	1.0	1684	0.9
176	0.0	392	0.0	608	0.9	824	1.1	1040	1.1	1256	1.1	1472	1.0	1688	0.9
180	0.0	396	0.0	612	0.9	828	1.1	1044	1.1	1260	1.1	1476	1.0	1692	0.9
184 188	0.0 0.0	400 404	0.0	616	0.9 0.9	832 836	1.1	1048	1.1	1264 1268	1.1	1480	1.0	1696 1700	0.9
	0.0		0.0	620	0.9	840	1.1	1052	1.1	1268	1.1	1484	1.0	1700	0.9
192 196	0.0	408 412	0.0	624 628	0.9	840	1.1 1.1	1056 1060	1.1	1272	1.1	1488 1492	1.0 1.0	1704	0.9 0.9
200	0.0	412	0.0	632	0.9	848	1.1	1060	1.1	1270	1.1	1492	1.0	1712	0.9
200	0.0	420	0.0	636	0.9	852	1.1	1068	1.1	1284	1.1	1500	1.0	1716	0.9
208	0.0	424	0.1	640	0.9	856	1.1	1072	1.1	1288	1.1	1504	1.0	1720	0.9
212	0.0	428	0.1	644	0.9	860	1.1	1076	1.1	1292	1.1	1508	1.0	1724	0.9
216	0.0	432	0.1	648	0.9	864	1.1	1080	1.1	1296	1.1	1512	1.0	1728	0.9
						©1982	2-2020) Innov	vyze						

Calibro Consultants Ltd		Page 3
Whitefriars	24-432	
Bristol	North Cray Road ESS	Concernant of the second
BS1 2NT	Western Storage Crates	Micro
Date 20/03/2025	Designed by CF	Drainago
File 24-432-Western Crates.SRCX	Checked by PG	Diamage
XP Solutions	Source Control 2020.1	

Time (mins)	Flow (1/s)														
1732 1736	0.9 0.9	1948 1952	1.0 1.0	2164 2168	1.0 1.0	2380 2384	1.0	2596 2600	1.0 1.0	2812 2816	1.0 1.0	3028 3032	1.0 1.0	3244 3248	1.0
1740	0.9	1952	1.0	2100	1.0	2388	1.0	2600	1.0	2820	1.0	3032	1.0	3252	1.0
1744	0.9	1960	1.0	2176	1.0	2392	1.0	2608	1.0	2824	1.0	3040	1.0	3256	1.0
1748	0.9	1964	1.0	2180	1.0	2396	1.0	2612	1.0	2828	1.0	3044	1.0	3260	1.0
1752	0.9	1968	1.0	2184	1.0	2400	1.0	2616	1.0	2832	1.0	3048	1.0	3264	1.0
1756	0.9	1972	1.0	2188	1.0	2404	1.0	2620	1.0	2836	1.0	3052	1.0	3268	1.0
1760	0.9	1976	1.0	2192	1.0	2408	1.0	2624	1.0	2840	1.0	3056	1.0	3272	1.0
1764	0.9	1980	1.0	2196	1.0	2412	1.0	2628	1.0	2844	1.0	3060	1.0	3276	1.0
1768 1772	0.9 0.9	1984 1988	1.0 1.0	2200 2204	1.0 1.0	2416 2420	1.0 1.0	2632 2636	1.0 1.0	2848 2852	1.0 1.0	3064 3068	1.0 1.0	3280 3284	1.0
1776	0.9	1900	1.0	2204	1.0	2420	1.0	2640	1.0	2852	1.0	3072	1.0	3288	1.0
1780	1.0	1996	1.0	2212	1.0	2428	1.0	2644	1.0	2860	1.0	3076	1.0	3292	1.0
1784	1.0	2000	1.0	2216	1.0	2432	1.0	2648	1.0	2864	1.0	3080	1.0	3296	1.0
1788	1.0	2004	1.0	2220	1.0	2436	1.0	2652	1.0	2868	1.0	3084	1.0	3300	1.0
1792	1.0	2008	1.0	2224	1.0	2440	1.0	2656	1.0	2872	1.0	3088	1.0	3304	1.0
1796	1.0	2012	1.0	2228	1.0	2444	1.0	2660	1.0	2876	1.0	3092	1.0	3308	1.0
1800	1.0	2016	1.0	2232	1.0	2448	1.0	2664	1.0	2880	1.0	3096	1.0	3312	1.0
1804	1.0	2020	1.0	2236	1.0	2452	1.0	2668	1.0	2884	1.0	3100	1.0	3316	1.0
1808	1.0	2024	1.0	2240	1.0	2456	1.0	2672	1.0	2888	1.0	3104	1.0	3320	1.0
1812 1816	1.0	2028 2032	1.0 1.0	2244 2248	1.0	2460 2464	1.0	2676 2680	1.0 1.0	2892 2896	1.0	3108 3112	1.0 1.0	3324 3328	1.0
1816	1.0 1.0	2032	1.0	2248	1.0 1.0	2464 2468	1.0	2680 2684	1.0	2896	1.0 1.0	3112	1.0	3328	1.0
1824	1.0	2030	1.0	2252	1.0	2400	1.0	2688	1.0	2900	1.0	3120	1.0	3336	1.0
1828	1.0	2044	1.0	2260	1.0	2476	1.0	2692	1.0	2908	1.0	3124	1.0	3340	1.0
1832	1.0	2048	1.0	2264	1.0	2480	1.0	2696	1.0	2912	1.0	3128	1.0	3344	1.0
1836	1.0	2052	1.0	2268	1.0	2484	1.0	2700	1.0	2916	1.0	3132	1.0	3348	1.0
1840	1.0	2056	1.0	2272	1.0	2488	1.0	2704	1.0	2920	1.0	3136	1.0	3352	1.0
1844	1.0	2060	1.0	2276	1.0	2492	1.0	2708	1.0	2924	1.0	3140	1.0	3356	1.0
1848	1.0	2064	1.0	2280	1.0	2496	1.0	2712	1.0	2928	1.0	3144	1.0	3360	1.0
1852	1.0	2068	1.0	2284	1.0	2500	1.0	2716	1.0	2932	1.0	3148	1.0	3364	1.0
1856	1.0	2072	1.0	2288	1.0	2504	1.0	2720	1.0	2936	1.0	3152	1.0	3368	1.0
1860	1.0	2076	1.0	2292	1.0	2508	1.0	2724	1.0	2940	1.0	3156	1.0	3372	1.0
1864 1868	1.0 1.0	2080 2084	1.0 1.0	2296 2300	1.0 1.0	2512 2516	1.0	2728 2732	1.0 1.0	2944 2948	1.0 1.0	3160 3164	1.0 1.0	3376 3380	1.0
1872	1.0	2084	1.0	2300	1.0	2520	1.0	2732	1.0	2940	1.0	3168	1.0	3384	1.0
1876	1.0	2092	1.0	2308	1.0	2524	1.0	2740	1.0	2956	1.0	3172	1.0	3388	1.0
1880	1.0	2096	1.0	2312	1.0	2528	1.0	2744	1.0	2960	1.0	3176	1.0	3392	1.0
1884	1.0	2100	1.0	2316	1.0	2532	1.0	2748	1.0	2964	1.0	3180	1.0	3396	1.0
1888	1.0	2104	1.0	2320	1.0	2536	1.0	2752	1.0	2968	1.0	3184	1.0	3400	1.0
1892	1.0	2108	1.0	2324	1.0	2540	1.0	2756	1.0	2972	1.0	3188	1.0	3404	1.0
1896	1.0	2112	1.0	2328	1.0	2544	1.0	2760	1.0	2976	1.0	3192	1.0	3408	1.0
1900	1.0	2116	1.0	2332	1.0	2548	1.0	2764	1.0	2980	1.0	3196	1.0	3412	1.0
1904	1.0	2120	1.0	2336	1.0	2552	1.0	2768	1.0	2984	1.0	3200	1.0	3416	1.0
1908	1.0	2124	1.0	2340	1.0	2556	1.0	2772	1.0	2988	1.0	3204	1.0	3420	1.0
1912 1916	1.0 1.0	2128 2132	1.0 1.0	2344 2348	1.0 1.0	2560 2564	1.0 1.0	2776 2780	1.0 1.0	2992 2996	1.0 1.0	3208 3212	1.0 1.0	3424 3428	1.0 1.0
1910	1.0	2132	1.0	2340	1.0	2568	1.0	2784	1.0	3000	1.0	3212	1.0	3432	1.0
1920	1.0	2130	1.0	2352	1.0	2508	1.0	2784	1.0	3000	1.0	3210	1.0	3432 3436	1.0
1928	1.0	2140	1.0	2360	1.0	2576	1.0	2792	1.0	3008	1.0	3224	1.0	3440	1.0
1932	1.0	2148	1.0	2364	1.0	2580	1.0	2796	1.0	3012	1.0	3228	1.0	3444	1.0
1936	1.0	2152	1.0	2368	1.0	2584	1.0	2800	1.0	3016	1.0	3232	1.0	3448	1.0
1940	1.0	2156	1.0	2372	1.0	2588	1.0	2804	1.0	3020	1.0	3236	1.0	3452	1.0
1944	1.0	2160	1.0	2376	1.0	2592	1.0	2808	1.0	3024	1.0	3240	1.0	3456	1.0
						@100/	<u></u>) Innov							
						@T 98'	2-2020	TUUO/	yze						

Calibro Consultants Ltd		Page 4
Whitefriars	24-432	
Bristol	North Cray Road ESS	New York
BS1 2NT	Western Storage Crates	Micro
Date 20/03/2025	Designed by CF	Dcainago
File 24-432-Western Crates.SRCX	Checked by PG	Diamaye
XP Solutions	Source Control 2020.1	

Time (mins)	Flow (1/s)	Time (mins)	Flow (1/s)	Time (mins)	Flow (1/s)	Time (mins)	Flow (1/s)	Time (mins)	Flow (1/s)	Time (mins)	Flow (1/s)	Time (mins)	Flow (1/s)	Time (mins)	Flow (l/s)
3460 3464	1.0 1.0	3676 3680	1.0 1.0	3892 3896	1.0 1.0	4108 4112	1.0 1.0	4324 4328	1.0 1.0	4540 4544	1.0 1.0	4756 4760	1.0 1.0	4972 4976	1.0
3468	1.0	3684	1.0	3900	1.0	4112	1.0	4320	1.0	4548	1.0	4764	1.0	4970	1.0
3472	1.0	3688	1.0	3904	1.0	4120	1.0	4336	1.0	4552	1.0	4768	1.0	4984	1.0
3476	1.0	3692	1.0	3908	1.0	4124	1.0	4340	1.0	4556	1.0	4772	1.0	4988	1.0
3480	1.0	3696	1.0	3912	1.0	4128	1.0	4344	1.0	4560	1.0	4776	1.0	4992	1.0
3484	1.0	3700	1.0	3916	1.0	4132	1.0	4348	1.0	4564	1.0	4780	1.0	4996	1.0
3488	1.0	3704	1.0	3920	1.0	4136	1.0	4352	1.0	4568	1.0	4784	1.0	5000	1.0
3492	1.0	3708	1.0	3924	1.0	4140	1.0	4356	1.0	4572	1.0	4788	1.0	5004	1.0
3496	1.0	3712	1.0	3928	1.0	4144	1.0	4360	1.0	4576	1.0	4792	1.0	5008	1.0
3500	1.0	3716	1.0	3932	1.0	4148	1.0	4364	1.0	4580	1.0	4796	1.0	5012	1.0
3504	1.0	3720	1.0	3936	1.0	4152	1.0	4368	1.0	4584	1.0	4800	1.0	5016	1.0
3508	1.0	3724	1.0	3940	1.0	4156	1.0	4372	1.0	4588	1.0	4804	1.0	5020	1.0
3512 3516	1.0	3728 3732	1.0 1.0	3944 3948	1.0	4160 4164	1.0	4376 4380	1.0	4592 4596	1.0	4808 4812	1.0	5024 5028	1.0
3516	1.0 1.0	3732	1.0	3948	1.0 1.0	4164 4168	1.0 1.0	4380	1.0 1.0	4596	1.0 1.0	4812	1.0 1.0	5028	1.0
3524	1.0	3740	1.0	3956	1.0	4103	1.0	4388	1.0	4604	1.0	4810	1.0	5032	1.0
3528	1.0	3744	1.0	3960	1.0	4176	1.0	4392	1.0	4608	1.0	4824	1.0	5040	1.0
3532	1.0	3748	1.0	3964	1.0	4180	1.0	4396	1.0	4612	1.0	4828	1.0	5044	1.0
3536	1.0	3752	1.0	3968	1.0	4184	1.0	4400	1.0	4616	1.0	4832	1.0	5048	1.0
3540	1.0	3756	1.0	3972	1.0	4188	1.0	4404	1.0	4620	1.0	4836	1.0	5052	1.0
3544	1.0	3760	1.0	3976	1.0	4192	1.0	4408	1.0	4624	1.0	4840	1.0	5056	1.0
3548	1.0	3764	1.0	3980	1.0	4196	1.0	4412	1.0	4628	1.0	4844	1.0	5060	1.0
3552	1.0	3768	1.0	3984	1.0	4200	1.0	4416	1.0	4632	1.0	4848	1.0	5064	1.0
3556	1.0	3772	1.0	3988	1.0	4204	1.0	4420	1.0	4636	1.0	4852	1.0	5068	1.0
3560	1.0	3776	1.0	3992	1.0	4208	1.0	4424	1.0	4640	1.0	4856	1.0	5072	1.0
3564	1.0	3780	1.0	3996	1.0	4212	1.0	4428	1.0	4644	1.0	4860	1.0	5076	1.0
3568	1.0	3784	1.0	4000	1.0	4216	1.0	4432	1.0	4648	1.0	4864	1.0	5080	1.0
3572	1.0	3788 3792	1.0	4004	1.0	4220 4224	1.0	4436	1.0	4652 4656	1.0	4868	1.0	5084 5088	1.0
3576 3580	1.0 1.0	3792	1.0 1.0	4008 4012	1.0 1.0	4224 4228	1.0 1.0	4440 4444	1.0 1.0	4656	1.0 1.0	4872 4876	1.0 1.0	5088	1.0
3584	1.0	3800	1.0	4012	1.0	4232	1.0	4448	1.0	4664	1.0	4880	1.0	5096	1.0
3588	1.0	3804	1.0	4020	1.0	4236	1.0	4452	1.0	4668	1.0	4884	1.0	5100	1.0
3592	1.0	3808	1.0	4024	1.0	4240	1.0	4456	1.0	4672	1.0	4888	1.0	5104	1.0
3596	1.0	3812	1.0	4028	1.0	4244	1.0	4460	1.0	4676	1.0	4892	1.0	5108	1.0
3600	1.0	3816	1.0	4032	1.0	4248	1.0	4464	1.0	4680	1.0	4896	1.0	5112	1.0
3604	1.0	3820	1.0	4036	1.0	4252	1.0	4468	1.0	4684	1.0	4900	1.0	5116	1.0
3608	1.0	3824	1.0	4040	1.0	4256	1.0	4472	1.0	4688	1.0	4904	1.0	5120	1.0
3612	1.0	3828	1.0	4044	1.0	4260	1.0	4476	1.0	4692	1.0	4908	1.0	5124	1.0
3616	1.0	3832	1.0	4048	1.0	4264	1.0	4480	1.0	4696	1.0	4912	1.0	5128	1.0
3620	1.0	3836	1.0	4052	1.0	4268	1.0	4484	1.0	4700	1.0	4916	1.0	5132	1.0
3624	1.0	3840	1.0	4056	1.0	4272	1.0	4488	1.0	4704	1.0	4920	1.0	5136	1.0
3628	1.0	3844	1.0	4060	1.0	4276	1.0	4492	1.0	4708	1.0	4924	1.0	5140	1.0
3632 3636	1.0 1.0	3848 3852	1.0 1.0	4064 4068	1.0 1.0	4280 4284	1.0 1.0	4496 4500	1.0 1.0	4712 4716	1.0 1.0	4928 4932	1.0 1.0	5144 5148	1.0 1.0
3640	1.0	3856	1.0	4008	1.0	4284	1.0	4500	1.0	4710	1.0	4932	1.0	5152	1.0
3644	1.0	3860	1.0	4072	1.0	4292	1.0	4508	1.0	4724	1.0	4940	1.0	5152	1.0
3648	1.0	3864	1.0	4080	1.0	4296	1.0	4512	1.0	4728	1.0	4944	1.0	5160	1.0
3652	1.0	3868	1.0	4084	1.0	4300	1.0	4516	1.0	4732	1.0	4948	1.0	5164	1.0
3656	1.0	3872	1.0	4088	1.0	4304	1.0	4520	1.0	4736	1.0	4952	1.0	5168	1.0
3660	1.0	3876	1.0	4092	1.0	4308	1.0	4524	1.0	4740	1.0	4956	1.0	5172	1.0
3664	1.0	3880	1.0	4096	1.0	4312	1.0	4528	1.0	4744	1.0	4960	1.0	5176	1.0
3668	1.0	3884	1.0	4100	1.0	4316	1.0	4532	1.0	4748	1.0	4964	1.0	5180	1.0
3672	1.0	3888	1.0	4104	1.0	4320	1.0	4536	1.0	4752	1.0	4968	1.0	5184	1.0
						@1 0.0 <i>1</i>	2_2020) Innov							
						ST 20'		, 11110/	уле						

Calibro Consultants Ltd		Page 5
Whitefriars	24-432	
Bristol	North Cray Road ESS	The second second
BS1 2NT	Western Storage Crates	Mirco
Date 20/03/2025	Designed by CF	Drainago
File 24-432-Western Crates.SRCX	Checked by PG	Diamaye
XP Solutions	Source Control 2020.1	

Time (mins)	Flow (1/s)	Time (mins)	Flow (l/s)	Time (mins)	Flow (1/s)	Time (mins)	Flow (l/s)	Time (mins)	Flow (l/s)	Time (mins)	Flow (l/s)	Time (mins)	Flow (l/s)	Time (mins)	Flow (1/s)
	(<i>i</i> = <i>i</i>	,		,		,	、 , , , ,	,	、 , , , ,	,	、 , , , ,	,		/	
5188	1.0	5260	1.0	5332	1.0	5404	1.0	5476	1.0	5548	1.0	5620	1.0	5692	1.0
5192	1.0	5264	1.0	5336	1.0	5408	1.0	5480	1.0	5552	1.0	5624	1.0	5696	1.0
5196	1.0	5268	1.0	5340	1.0	5412	1.0	5484	1.0	5556	1.0	5628	1.0	5700	1.0
5200	1.0	5272	1.0	5344	1.0	5416	1.0	5488	1.0	5560	1.0	5632	1.0	5704	1.0
5204	1.0	5276	1.0	5348	1.0	5420	1.0	5492	1.0	5564	1.0	5636	1.0	5708	1.0
5208	1.0	5280	1.0	5352	1.0	5424	1.0	5496	1.0	5568	1.0	5640	1.0	5712	1.0
5212	1.0	5284	1.0	5356	1.0	5428	1.0	5500	1.0	5572	1.0	5644	1.0	5716	1.0
5216	1.0	5288	1.0	5360	1.0	5432	1.0	5504	1.0	5576	1.0	5648	1.0	5720	1.0
5220	1.0	5292	1.0	5364	1.0	5436	1.0	5508	1.0	5580	1.0	5652	1.0	5724	1.0
5224	1.0	5296	1.0	5368	1.0	5440	1.0	5512	1.0	5584	1.0	5656	1.0	5728	1.0
5228	1.0	5300	1.0	5372	1.0	5444	1.0	5516	1.0	5588	1.0	5660	1.0	5732	1.0
5232	1.0	5304	1.0	5376	1.0	5448	1.0	5520	1.0	5592	1.0	5664	1.0	5736	1.0
5236	1.0	5308	1.0	5380	1.0	5452	1.0	5524	1.0	5596	1.0	5668	1.0	5740	1.0
5240	1.0	5312	1.0	5384	1.0	5456	1.0	5528	1.0	5600	1.0	5672	1.0	5744	1.0
5244	1.0	5316	1.0	5388	1.0	5460	1.0	5532	1.0	5604	1.0	5676	1.0	5748	1.0
5248	1.0	5320	1.0	5392	1.0	5464	1.0	5536	1.0	5608	1.0	5680	1.0	5752	1.0
5252	1.0	5324	1.0	5396	1.0	5468	1.0	5540	1.0	5612	1.0	5684	1.0	5756	1.0
5256	1.0	5328	1.0	5400	1.0	5472	1.0	5544	1.0	5616	1.0	5688	1.0	5760	1.0

Calibro Consultants Ltd		Page 6
Whitefriars	24-432	
Bristol	North Cray Road ESS	The second second
BS1 2NT	Western Storage Crates	Mirco
Date 20/03/2025	Designed by CF	Desinary
File 24-432-Western Crates.SRCX	Checked by PG	Diamay
XP Solutions	Source Control 2020.1	

Model Details

Storage is Online Cover Level (m) 1.000

Cellular Storage Structure

Invert Level (m) 0.000 Safety Factor 5.0 Infiltration Coefficient Base (m/hr) 0.01800 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.01800

Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²)

0.000	256.0	256.0	1.000	256.0	392.0
-------	-------	-------	-------	-------	-------

Calibro Consultants Ltd		Page 1
Whitefriars	24-432	C
Bristol	North Cray Road ESS	
BS1 2NT	Western ESS Gravel Base - Sens	Micro
Date 20/03/2025	Designed by CF	Dcainago
File 24-432-Western Gravel Base Netw	Checked by PG	Diamage
XP Solutions	Source Control 2020.1	

Summary of Results for 100 year Return Period (+40%)

Half Drain Time exceeds 7 days.

	Storm Event		Max Level (m)	Max Max Depth Infiltrat (m) (1/s)		Max Control Σ (l/s)		Max Outflow (1/s)	Max Volume (m³)	Status
15	min S	Summer	0.205	0.205	0.0	0.9		0.9	255.7	Flood Risk
30	min S	Summer	0.239	0.239	0.0	0.9		0.9	347.2	Flood Risk
60	min S	Summer	0.271	0.271	0.0	0.9		0.9	441.2	Flood Risk
120	min S	Summer	0.305	0.305	0.0	0.9		0.9	539.0	Flood Risk
180	min S	Summer	0.329	0.329	0.0	0.9		0.9	608.9	Flood Risk
240	min S	Summer	0.346	0.346	0.0	0.9		0.9	659.8	Flood Risk
360	min S	Summer	0.368	0.368	0.0	0.9		0.9	723.8	Flood Risk
480	min S	Summer	0.382	0.382	0.0	0.9		0.9	764.1	Flood Risk
600	min S	Summer	0.392	0.392	0.0	0.9		0.9	792.6	Flood Risk
720	min S	Summer	0.399	0.399	0.0	0.9		0.9	814.2	Flood Risk
960	min S	Summer	0.410	0.410	0.0	0.9		0.9	845.1	Flood Risk
1440	min S	Summer	0.421	0.421	0.0	0.9		0.9	876.9	Flood Risk
2160	min S	Summer	0.429	0.429	0.0	0.9		0.9	900.3	Flood Risk
2880	min S	Summer	0.432	0.432	0.0	0.9		0.9	910.4	Flood Risk
4320	min S	Summer	0.432	0.432	0.0	0.9		0.9	910.0	Flood Risk
5760	min S	Summer	0.427	0.427	0.0	0.9		0.9	896.2	Flood Risk
7200	min S	Summer	0.421	0.421	0.0	0.9		0.9	877.2	Flood Risk
8640	min S	Summer	0.416	0.416	0.0	0.9		0.9	863.7	Flood Risk
10080	min S	Summer	0.413	0.413	0.0	0.9		0.9	854.3	Flood Risk
15	min V	Winter	0.219	0.219	0.0	0.9		0.9	292.3	Flood Risk
30	min V	Winter	0.255	0.255	0.0	0.9		0.9	394.9	Flood Risk
60	min V	Winter	0.292	0.292	0.0	0.9		0.9	500.3	Flood Risk

15 min Summer167.4900.076.61930 min Summer109.0940.075.23460 min Summer67.6710.0148.664120 min Summer40.7880.0142.9124180 min Summer30.5480.0135.8184240 min Summer24.7780.0131.1244360 min Summer18.1480.0130.2364480 min Summer12.0370.0131.6484600 min Summer10.3620.0132.3604720 min Summer10.3620.0132.59641440 min Summer5.7960.0130.514422160 min Summer3.2510.0265.721642880 min Summer3.2510.0252.143205760 min Summer1.8580.0514.257607200 min Summer1.5580.0503.164168640 min Summer1.3550.0489.3717610080 min Summer1.2090.074.53430 min Winter109.0940.074.534		Stor Even		Rain (mm/hr)		Discharge Volume (m³)	Time-Peak (mins)
60 min Summer67.6710.0148.664120 min Summer40.7880.0142.9124180 min Summer30.5480.0135.8184240 min Summer24.7780.0131.1244360 min Summer18.1480.0130.2364480 min Summer14.4290.0131.6484600 min Summer12.0370.0132.3604720 min Summer10.3620.0132.59641440 min Summer5.7960.0130.514422160 min Summer3.2510.0265.721642880 min Summer3.2510.0252.143205760 min Summer1.8580.0514.257607200 min Summer1.5580.0503.164168640 min Summer1.3550.0489.3717610080 min Summer1.2090.0473.2796015 min Winter167.4900.076.21930 min Winter109.0940.074.534	15	min	Summer	167.490	0.0	76.6	19
120 min Summer40.7880.0142.9124180 min Summer30.5480.0135.8184240 min Summer24.7780.0131.1244360 min Summer18.1480.0130.2364480 min Summer14.4290.0131.6484600 min Summer12.0370.0132.3604720 min Summer10.3620.0132.6724960 min Summer8.1650.0130.514422160 min Summer5.7960.0130.514422160 min Summer3.2510.0265.721642880 min Summer3.2510.0252.143205760 min Summer1.8580.0514.257607200 min Summer1.5580.0503.164168640 min Summer1.3550.0489.3717610080 min Summer1.2090.0473.2796015 min Winter167.4900.076.21930 min Winter109.0940.074.534	30	min	Summer	109.094	0.0	75.2	34
180 min Summer30.5480.0135.8184240 min Summer24.7780.0131.1244360 min Summer18.1480.0130.2364480 min Summer14.4290.0131.6484600 min Summer12.0370.0132.3604720 min Summer10.3620.0132.6724960 min Summer8.1650.0132.59641440 min Summer5.7960.0130.514422160 min Summer3.2510.0265.721642880 min Summer3.2510.0252.143205760 min Summer1.8580.0514.257607200 min Summer1.5580.0503.164168640 min Summer1.3550.0489.3717610080 min Summer1.2090.0473.2796015 min Winter167.4900.076.21930 min Winter109.0940.074.534	60	min	Summer	67.671	0.0	148.6	64
240 min Summer24.7780.0131.1244360 min Summer18.1480.0130.2364480 min Summer14.4290.0131.6484600 min Summer12.0370.0132.3604720 min Summer10.3620.0132.6724960 min Summer8.1650.0132.59641440 min Summer5.7960.0130.514422160 min Summer3.2510.0265.721642880 min Summer3.2510.0252.143205760 min Summer1.8580.0514.257607200 min Summer1.5580.0503.164168640 min Summer1.3550.0489.3717610080 min Summer1.2090.0473.2796015 min Winter167.4900.076.21930 min Winter109.0940.074.534	120	min	Summer	40.788	0.0	142.9	124
360 min Summer18.1480.0130.2364480 min Summer14.4290.0131.6484600 min Summer12.0370.0132.3604720 min Summer10.3620.0132.6724960 min Summer8.1650.0132.59641440 min Summer5.7960.0130.514422160 min Summer3.2510.0265.721642880 min Summer3.2510.0252.143205760 min Summer1.8580.0514.257607200 min Summer1.5580.0503.164168640 min Summer1.3550.0489.3717610080 min Summer1.2090.0473.2796015 min Winter167.4900.076.21930 min Winter109.0940.074.534	180	min	Summer	30.548	0.0	135.8	184
480 min Summer14.4290.0131.6484600 min Summer12.0370.0132.3604720 min Summer10.3620.0132.6724960 min Summer8.1650.0132.59641440 min Summer5.7960.0130.514422160 min Summer4.1250.0265.721642880 min Summer3.2510.0262.328844320 min Summer1.8580.0514.257607200 min Summer1.5580.0503.164168640 min Summer1.3550.0489.3717610080 min Summer1.2090.0473.2796015 min Winter167.4900.076.21930 min Winter109.0940.074.534	240	min	Summer	24.778	0.0	131.1	244
600 min Summer12.0370.0132.3604720 min Summer10.3620.0132.6724960 min Summer8.1650.0132.59641440 min Summer5.7960.0130.514422160 min Summer4.1250.0265.721642880 min Summer3.2510.0262.328844320 min Summer1.8580.0514.257607200 min Summer1.5580.0503.164168640 min Summer1.3550.0489.3717610080 min Summer1.2090.0473.2796015 min Winter167.4900.076.21930 min Winter109.0940.074.534	360	min	Summer	18.148	0.0	130.2	364
720 min Summer10.3620.0132.6724960 min Summer8.1650.0132.59641440 min Summer5.7960.0130.514422160 min Summer4.1250.0265.721642880 min Summer3.2510.0262.328844320 min Summer2.3360.0252.143205760 min Summer1.8580.0514.257607200 min Summer1.5580.0503.164168640 min Summer1.3550.0489.3717610080 min Summer1.2090.0473.2796015 min Winter167.4900.076.21930 min Winter109.0940.074.534	480	min	Summer	14.429	0.0	131.6	484
960 min Summer8.1650.0132.59641440 min Summer5.7960.0130.514422160 min Summer4.1250.0265.721642880 min Summer3.2510.0262.328844320 min Summer2.3360.0252.143205760 min Summer1.8580.0514.257607200 min Summer1.5580.0503.164168640 min Summer1.3550.0489.3717610080 min Summer1.2090.0473.2796015 min Winter167.4900.076.21930 min Winter109.0940.074.534	600	min	Summer	12.037	0.0	132.3	604
1440 min Summer5.7960.0130.514422160 min Summer4.1250.0265.721642880 min Summer3.2510.0262.328844320 min Summer2.3360.0252.143205760 min Summer1.8580.0514.257607200 min Summer1.5580.0503.164168640 min Summer1.3550.0489.3717610080 min Summer1.2090.0473.2796015 min Winter167.4900.076.21930 min Winter109.0940.074.534	720	min	Summer	10.362	0.0	132.6	724
2160 min Summer4.1250.0265.721642880 min Summer3.2510.0262.328844320 min Summer2.3360.0252.143205760 min Summer1.8580.0514.257607200 min Summer1.5580.0503.164168640 min Summer1.3550.0489.3717610080 min Summer1.2090.0473.2796015 min Winter167.4900.076.21930 min Winter109.0940.074.534	960	min	Summer	8.165	0.0	132.5	964
2880 min Summer3.2510.0262.328844320 min Summer2.3360.0252.143205760 min Summer1.8580.0514.257607200 min Summer1.5580.0503.164168640 min Summer1.3550.0489.3717610080 min Summer1.2090.0473.2796015 min Winter167.4900.076.21930 min Winter109.0940.074.534	1440	min	Summer	5.796	0.0	130.5	1442
4320 min Summer2.3360.0252.143205760 min Summer1.8580.0514.257607200 min Summer1.5580.0503.164168640 min Summer1.3550.0489.3717610080 min Summer1.2090.0473.2796015 min Winter167.4900.076.21930 min Winter109.0940.074.534	2160	min	Summer	4.125	0.0	265.7	2164
5760 min Summer1.8580.0514.257607200 min Summer1.5580.0503.164168640 min Summer1.3550.0489.3717610080 min Summer1.2090.0473.2796015 min Winter167.4900.076.21930 min Winter109.0940.074.534	2880	min	Summer	3.251	0.0	262.3	2884
7200 min Summer1.5580.0503.164168640 min Summer1.3550.0489.3717610080 min Summer1.2090.0473.2796015 min Winter167.4900.076.21930 min Winter109.0940.074.534	4320	min	Summer	2.336	0.0	252.1	4320
8640 min Summer1.3550.0489.3717610080 min Summer1.2090.0473.2796015 min Winter167.4900.076.21930 min Winter109.0940.074.534	5760	min	Summer	1.858	0.0	514.2	5760
10080 min Summer1.2090.0473.2796015 min Winter167.4900.076.21930 min Winter109.0940.074.534	7200	min	Summer	1.558	0.0	503.1	6416
15 min Winter 167.4900.076.21930 min Winter 109.0940.074.534	8640	min	Summer	1.355	0.0	489.3	7176
30 min Winter 109.094 0.0 74.5 34	10080	min	Summer	1.209	0.0	473.2	7960
	15	min	Winter	167.490	0.0	76.2	19
	30	min	Winter	109.094	0.0	74.5	34
60 min Winter 67.671 0.0 146.1 64	60	min				146.1	64

©1982-2020 Innovyze

Calibro Consultants Ltd		Page 2
Whitefriars	24-432	
Bristol	North Cray Road ESS	the second
BS1 2NT	Western ESS Gravel Base - Sens	Micro
Date 20/03/2025	Designed by CF	Drainage
File 24-432-Western Gravel Base Netw	Checked by PG	Diamaye
XP Solutions	Source Control 2020.1	

Summary of Results for 100 year Return Period (+40%)

	Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (l/s)	Max Control (l/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
120	min Wi	nter	0.329	0.329	0.0	0.9	0.9	610.3	Flood Risk
180	min Wi	nter	0.356	0.356	0.0	0.9	0.9	689.0	Flood Risk
240	min Wi	nter	0.376	0.376	0.0	0.9	0.9	746.2	Flood Risk
360	min Wi	nter	0.401	0.401	0.0	0.9	0.9	818.6	Flood Risk
480	min Wi	nter	0.416	0.416	0.0	0.9	0.9	864.5	Flood Risk
600	min Wi	nter	0.428	0.428	0.0	0.9	0.9	897.3	Flood Risk
720	min Wi	nter	0.436	0.436	0.0	0.9	0.9	922.2	Flood Risk
960	min Wi	nter	0.449	0.449	0.0	0.9	0.9	958.4	Flood Risk
1440	min Wi	nter	0.462	0.462	0.0	0.9	0.9	997.3	Flood Risk
2160	min Wi	nter	0.473	0.473	0.0	0.9	0.9	1028.4	Flood Risk
2880	min Wi	nter	0.478	0.478	0.0	0.9	0.9	1044.8	Flood Risk
4320	min Wi	nter	0.482	0.482	0.0	0.9	0.9	1054.6	Flood Risk
5760	min Wi	nter	0.480	0.480	0.0	0.9	0.9	1049.6	Flood Risk
7200	min Wi	nter	0.475	0.475	0.0	0.9	0.9	1034.8	Flood Risk
8640	min Wi	nter	0.469	0.469	0.0	0.9	0.9	1018.0	Flood Risk
10080	min Wi	nter	0.464	0.464	0.0	0.9	0.9	1002.3	Flood Risk

	Stor Even		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)
120	min	Winter	40.788	0.0	136.4	124
180	min	Winter	30.548	0.0	130.8	182
240	min	Winter	24.778	0.0	132.1	242
360	min	Winter	18.148	0.0	135.2	362
480	min	Winter	14.429	0.0	136.7	480
600	min	Winter	12.037	0.0	137.5	598
720	min	Winter	10.362	0.0	137.8	716
960	min	Winter	8.165	0.0	137.7	954
1440	min	Winter	5.796	0.0	135.6	1428
2160	min	Winter	4.125	0.0	276.8	2124
2880	min	Winter	3.251	0.0	273.3	2824
4320	min	Winter	2.336	0.0	262.9	4192
5760	min	Winter	1.858	0.0	539.7	5536
7200	min	Winter	1.558	0.0	529.4	6840
8640	min	Winter	1.355	0.0	516.8	8048
10080	min	Winter	1.209	0.0	502.3	9080

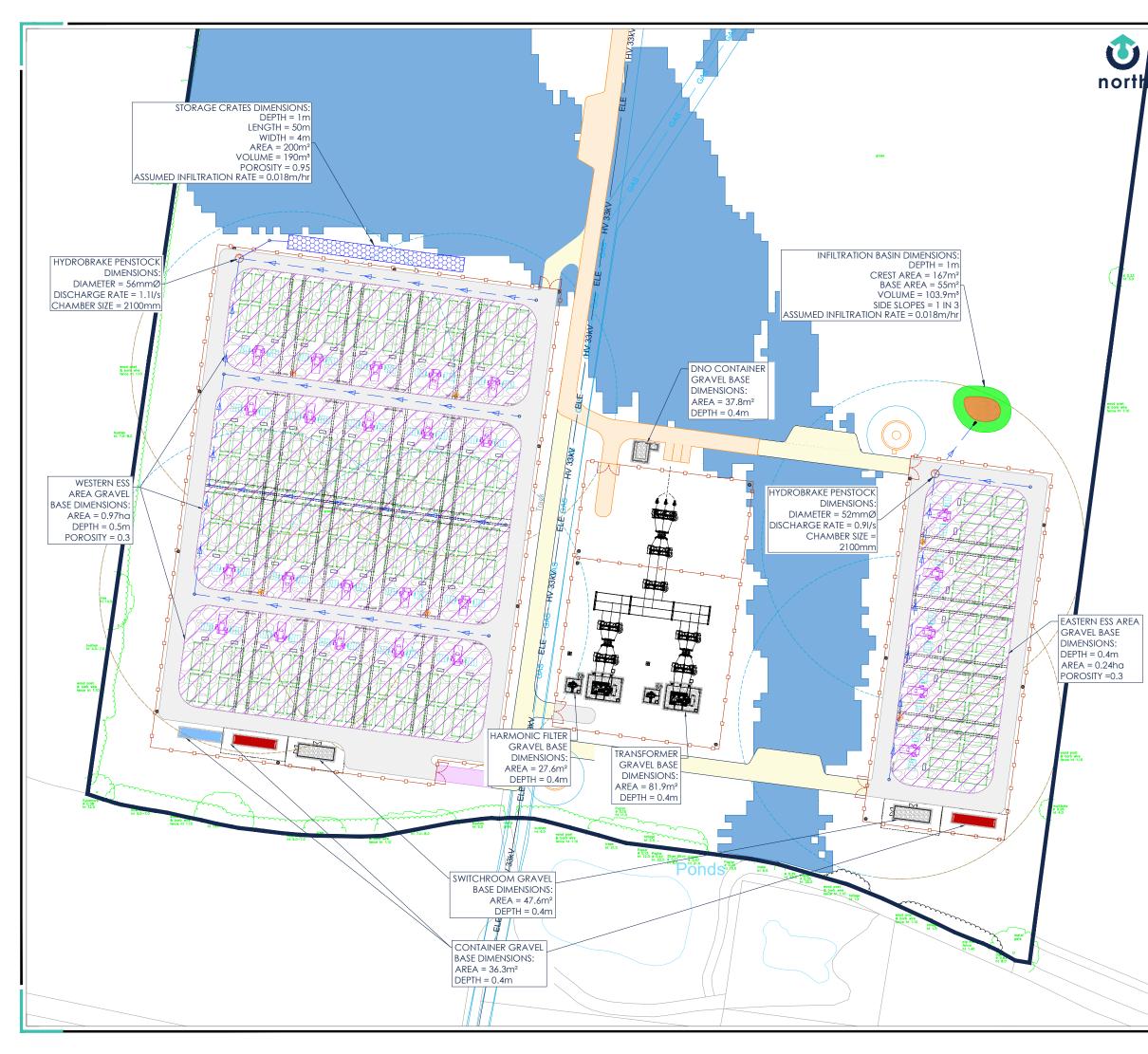
Calibro Consultants Ltd		Page 3
Whitefriars	24-432	
Bristol	North Cray Road ESS	
BS1 2NT	Western ESS Gravel Base - Sens	Micco
Date 20/03/2025	Designed by CF	Desinado
File 24-432-Western Gravel Base Netw	Checked by PG	Drainage
XP Solutions	Source Control 2020.1	
Ē	Rainfall Details	
Rainfall Model	FEH Winter Storms Ye	es
Return Period (years)	100 Cv (Summer) 0.7	50
FEH Rainfall Version	2013 Cv (Winter) 0.8	40
Site Location GB 548707	170729 TQ 48707 70729 Shortest Storm (mins)	
Data Type	Point Longest Storm (mins) 1003	
Summer Storms	Yes Climate Change % +	40

Time Area Diagram

Total Area (ha) 0.972

Time	(mins)	Area
From:	To:	(ha)

0 4 0.972


Calibro Consultants Ltd		Page 4
Nhitefriars	24-432	
Bristol	North Cray Road ESS	100 Carlos 100
3S1 2NT	Western ESS Gravel Base - Sens	Micco
Date 20/03/2025	Designed by CF	
File 24-432-Western Gravel Base Netw		Urainage
XP Solutions	Source Control 2020.1	
-		
	Model Details	
Storage is	s Online Cover Level (m) 0.500	
Porot	us Car Park Structure	
Infiltration Coefficient Bas	se (m/hr) 0.00000 Width (m) 81	.0
Membrane Percolation	n (mm/hr) 1000 Length (m) 120	.0
	ion (1/s) 2700.0 Slope (1:X) 500	
Safet	ty Factor2.0 Depression Storage (mm)Porosity0.30Evaporation (mm/day)	5 3
Invert !	Level (m) 0.000 Membrane Depth (m)	0
Hydro-Brak	ke® Optimum Outflow Control	
TT	nit Reference MD-SHE-0051-9000-0500-9000	
	sign Head (m) 0.500	
	gn Flow (1/s) 0.9	
	Flush-Flo™ Calculated	
	Objective Minimise upstream storage	
c'	Application Surface Sump Available Yes	
	Diameter (mm) 51	
	vert Level (m) 0.000	
Minimum Outlet Pipe 1		
-		
Suggested Manhole 1		
-	Diameter (mm) 1200	Flow (l/s)
Suggested Manhole Manhole Montrol Points Head (m) F Design Point (Calculated) 0.500	Diameter (mm) 1200 Flow (1/s) Control Points Head (m) 0.9 Kick-Flo® 0.328	0.7
Suggested Manhole Manh	Diameter (mm) 1200 Flow (1/s) Control Points Head (m)	0.7
Suggested Manhole M Control Points Head (m) F Design Point (Calculated) 0.500 Flush-Flo™ 0.150 The hydrological calculations have been base	Diameter (mm) 1200 Flow (1/s) Control Points Head (m) 0.9 Kick-Flo® 0.328 0.9 Mean Flow over Head Range - ed on the Head/Discharge relationship for the	0.7 0.8 Hydro-Brake® Optimum
Suggested Manhole M Control Points Head (m) F Design Point (Calculated) 0.500 Flush-Flo™ 0.150 The hydrological calculations have been base as specified. Should another type of contro	Diameter (mm) 1200 Flow (1/s) Control Points Head (m) 0.9 Kick-Flo® 0.328 0.9 Mean Flow over Head Range - ed on the Head/Discharge relationship for the ol device other than a Hydro-Brake Optimum® be	0.7 0.8 Hydro-Brake® Optimum
Suggested Manhole I Control Points Head (m) F Design Point (Calculated) 0.500 Flush-Flo™ 0.150 The hydrological calculations have been base as specified. Should another type of contro storage routing calculations will be invalid	Diameter (mm) 1200 Flow (1/s) Control Points Head (m) 0.9 Kick-Flo® 0.328 0.9 Mean Flow over Head Range - ed on the Head/Discharge relationship for the ol device other than a Hydro-Brake Optimum® be dated	0.7 0.8 Hydro-Brake® Optimum e utilised then these
Suggested Manhole I Control Points Head (m) F Design Point (Calculated) 0.500 Flush-Flo™ 0.150 The hydrological calculations have been base as specified. Should another type of contro storage routing calculations will be invalid	Diameter (mm) 1200 Flow (1/s) Control Points Head (m) 0.9 Kick-Flo® 0.328 0.9 Mean Flow over Head Range - ed on the Head/Discharge relationship for the ol device other than a Hydro-Brake Optimum® be	0.7 0.8 Hydro-Brake® Optimum e utilised then these
Suggested Manhole I Control Points Head (m) F Design Point (Calculated) 0.500 Flush-Flo™ 0.150 The hydrological calculations have been base as specified. Should another type of control storage routing calculations will be invalid Depth (m) Flow (1/s) Depth (m) Flow (1/s) I 0.100 0.9 0.800 1.1	Diameter (mm) 1200 Flow (1/s) Control Points Head (m) 0.9 Kick-Flo® 0.328 0.9 Mean Flow over Head Range - ed on the Head/Discharge relationship for the ol device other than a Hydro-Brake Optimum® be dated Depth (m) Flow (1/s) Depth (m) Flow (1/s) Dep 2.000 1.7 4.000 2.3	0.7 0.8 Hydro-Brake® Optimum e utilised then these pth (m) Flow (1/s) 7.000 3.0
Suggested Manhole I Control Points Head (m) F Design Point (Calculated) 0.500 Flush-Flo™ 0.150 The hydrological calculations have been base as specified. Should another type of control storage routing calculations will be invalid Depth (m) Flow (1/s) Depth (m) Flow (1/s) I 0.100 0.9 0.800 1.1 0.200 0.9 1.000 1.2	Diameter (mm)1200Flow (1/s)Control PointsHead (m)0.9Kick-Flo®0.3280.9Mean Flow over Head Range-ed on the Head/Discharge relationship for the ol device other than a Hydro-Brake Optimum® be datedDepth (m) Flow (1/s)DepDepth (m)Flow (1/s)Depth (m) Flow (1/s)Dep2.0001.74.0002.32.2001.74.5002.4	0.7 0.8 Hydro-Brake® Optimum e utilised then these pth (m) Flow (1/s) 7.000 3.0 7.500 3.1
Suggested Manhole I Control Points Head (m) F Design Point (Calculated) 0.500 Flush-Flo™ 0.150 The hydrological calculations have been base as specified. Should another type of contros storage routing calculations will be invalid Depth (m) Flow (1/s) Depth (m) Flow (1/s) I 0.100 0.9 0.800 1.1 0.200 0.9 1.000 1.2 0.300 0.8 1.200 1.3	Diameter (mm) 1200 Flow (1/s) Control Points Head (m) 0.9 Kick-Flo® 0.328 0.9 Mean Flow over Head Range - ed on the Head/Discharge relationship for the ol device other than a Hydro-Brake Optimum® be dated Depth (m) Flow (1/s) Depth (m) Flow (1/s) Dep 2.000 1.7 4.000 2.3 2.200 1.7 4.500 2.4 5.000 2.6	0.7 0.8 Hydro-Brake® Optimum e utilised then these pth (m) Flow (1/s) 7.000 3.0 7.500 3.1 8.000 3.2
Suggested Manhole I Control Points Head (m) F Design Point (Calculated) 0.500 Flush-Flo™ 0.150 The hydrological calculations have been base as specified. Should another type of control storage routing calculations will be invalid Depth (m) Flow (1/s) Depth (m) Flow (1/s) I 0.100 0.9 0.800 1.1 0.200 0.9 1.000 1.2	Diameter (mm)1200Flow (1/s)Control PointsHead (m)0.9Kick-Flo®0.3280.9Mean Flow over Head Range-ed on the Head/Discharge relationship for the ol device other than a Hydro-Brake Optimum® be datedDepth (m) Flow (1/s)DepDepth (m)Flow (1/s)Depth (m) Flow (1/s)Dep2.0001.74.0002.32.2001.74.5002.4	0.7 0.8 Hydro-Brake® Optimur e utilised then these pth (m) Flow (1/s) 7.000 3.0 7.500 3.1

APPENDIX C

Drainage Strategy

Rev 01 | Copyright © 2025 Calibro Consultants Ltd

CUENT: NET ZERO THIRTYTWO LTD						
site: NORT	SITE: NORTH CRAY ROAD ESS					
πtle: D	DRAWING TITLE					
C	calibro					
SCALE: DATE: DRAWN: CHECKED:						
1:1000 @ A3	21/03/2025 CF PG					
PROJECT: COMPANY: 24-432 CAL	TYPE: DRAWING NO: SHEET NO: REVISION: DR 60-100 - 00					
Copyright © 2025 Calibro Consultants Ltd Spectrum Bristol BSI 3LG T 0117 2441 970 E helio@calibro-consultants.com www.calibro-consultants.com						

00	FIRST ISSUE	CF	PG	21/03/25
REV:	DESCRIPTION:	BY:	CHK:	DATE:

FOR INFORMATION

- 4. NOT SUITABLE FOR CONSTRUCTION
- 2. DO NOT SCALE FROM THIS DRAWING 3. FOR INFORMATION ONLY
- NOTES 1. ALL LEVELS AND PRECISE LOCATIONS SUBJECT TO SITE SETTING OUT

CHAMBER

Spectrum, Bond St. | Bristol | BS1 3LG
 O117 2441 970
 Pello@calibro-consultants.com
 www.calibro-consultants.com
 Registered office as above
 Registered office as above
 Registered in England & Wales: 9988524

Transport Planning | Flood Risk & Hydrology | Infrastructure & Drainage

IEMA Transforming the world to sustainability